1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Efficient implementation of [FSetInterface.S] for positive keys,
inspired from the [FMapPositive] module.
This module was adapted by Alexandre Ren, Damien Pous, and Thomas
Braibant (2010, LIG, CNRS, UMR 5217), from the [FMapPositive]
module of Pierre Letouzey and Jean-Christophe Filliâtre, which in
turn comes from the [FMap] framework of a work by Xavier Leroy and
Sandrine Blazy (used for building certified compilers).
*)
From Stdlib Require Import Bool PeanoNat BinPos OrderedType OrderedTypeEx FSetInterface.
Set Implicit Arguments.
Local Open Scope lazy_bool_scope.
Local Open Scope positive_scope.
Local Unset Elimination Schemes.
Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
Definition elt := positive : Type.
Inductive tree :=
| Leaf : tree
| Node : tree -> bool -> tree -> tree.
Scheme tree_ind := Induction for tree Sort Prop.
Definition t := tree : Type.
Definition empty : t := Leaf.
Fixpoint is_empty (m : t) : bool :=
match m with
| Leaf => true
| Node l b r => negb b &&& is_empty l &&& is_empty r
end.
Fixpoint mem (i : elt) (m : t) {struct m} : bool :=
match m with
| Leaf => false
| Node l o r =>
match i with
| 1 => o
| i~0 => mem i l
| i~1 => mem i r
end
end.
Fixpoint add (i : elt) (m : t) : t :=
match m with
| Leaf =>
match i with
| 1 => Node Leaf true Leaf
| i~0 => Node (add i Leaf) false Leaf
| i~1 => Node Leaf false (add i Leaf)
end
| Node l o r =>
match i with
| 1 => Node l true r
| i~0 => Node (add i l) o r
| i~1 => Node l o (add i r)
end
end.
Definition singleton i := add i empty.
(** helper function to avoid creating empty trees that are not leaves *)
Definition node (l : t) (b: bool) (r : t) : t :=
if b then Node l b r else
match l,r with
| Leaf,Leaf => Leaf
| _,_ => Node l false r end.
Fixpoint remove (i : elt) (m : t) {struct m} : t :=
match m with
| Leaf => Leaf
| Node l o r =>
match i with
| 1 => node l false r
| i~0 => node (remove i l) o r
| i~1 => node l o (remove i r)
end
end.
Fixpoint union (m m': t) : t :=
match m with
| Leaf => m'
| Node l o r =>
match m' with
| Leaf => m
| Node l' o' r' => Node (union l l') (o||o') (union r r')
end
end.
Fixpoint inter (m m': t) : t :=
match m with
| Leaf => Leaf
| Node l o r =>
match m' with
| Leaf => Leaf
| Node l' o' r' => node (inter l l') (o&&o') (inter r r')
end
end.
Fixpoint diff (m m': t) : t :=
match m with
| Leaf => Leaf
| Node l o r =>
match m' with
| Leaf => m
| Node l' o' r' => node (diff l l') (o&&negb o') (diff r r')
end
end.
Fixpoint equal (m m': t): bool :=
match m with
| Leaf => is_empty m'
| Node l o r =>
match m' with
| Leaf => is_empty m
| Node l' o' r' => eqb o o' &&& equal l l' &&& equal r r'
end
end.
Fixpoint subset (m m': t): bool :=
match m with
| Leaf => true
| Node l o r =>
match m' with
| Leaf => is_empty m
| Node l' o' r' => (negb o ||| o') &&& subset l l' &&& subset r r'
end
end.
(** reverses [y] and concatenate it with [x] *)
Fixpoint rev_append (y x : elt) : elt :=
match y with
| 1 => x
| y~1 => rev_append y x~1
| y~0 => rev_append y x~0
end.
Infix "@" := rev_append (at level 60).
Definition rev x := x@1.
Section Fold.
Variable B : Type.
Variable f : elt -> B -> B.
(** the additional argument, [i], records the current path, in
reverse order (this should be more efficient: we reverse this argument
only at present nodes only, rather than at each node of the tree).
we also use this convention in all functions below
*)
Fixpoint xfold (m : t) (v : B) (i : elt) :=
match m with
| Leaf => v
| Node l true r =>
xfold r (f (rev i) (xfold l v i~0)) i~1
| Node l false r =>
xfold r (xfold l v i~0) i~1
end.
Definition fold m i := xfold m i 1.
End Fold.
Section Quantifiers.
Variable f : elt -> bool.
Fixpoint xforall (m : t) (i : elt) :=
match m with
| Leaf => true
| Node l o r =>
(negb o ||| f (rev i)) &&& xforall r i~1 &&& xforall l i~0
end.
Definition for_all m := xforall m 1.
Fixpoint xexists (m : t) (i : elt) :=
match m with
| Leaf => false
| Node l o r => (o &&& f (rev i)) ||| xexists r i~1 ||| xexists l i~0
end.
Definition exists_ m := xexists m 1.
Fixpoint xfilter (m : t) (i : elt) : t :=
match m with
| Leaf => Leaf
| Node l o r => node (xfilter l i~0) (o &&& f (rev i)) (xfilter r i~1)
end.
Definition filter m := xfilter m 1.
Fixpoint xpartition (m : t) (i : elt) : t * t :=
match m with
| Leaf => (Leaf,Leaf)
| Node l o r =>
let (lt,lf) := xpartition l i~0 in
let (rt,rf) := xpartition r i~1 in
if o then
let fi := f (rev i) in
(node lt fi rt, node lf (negb fi) rf)
else
(node lt false rt, node lf false rf)
end.
Definition partition m := xpartition m 1.
End Quantifiers.
(** uses [a] to accumulate values rather than doing a lot of concatenations *)
Fixpoint xelements (m : t) (i : elt) (a: list elt) :=
match m with
| Leaf => a
| Node l false r => xelements l i~0 (xelements r i~1 a)
| Node l true r => xelements l i~0 (rev i :: xelements r i~1 a)
end.
Definition elements (m : t) := xelements m 1 nil.
Fixpoint cardinal (m : t) : nat :=
match m with
| Leaf => O
| Node l false r => (cardinal l + cardinal r)%nat
| Node l true r => S (cardinal l + cardinal r)
end.
Definition omap (f: elt -> elt) x :=
match x with
| None => None
| Some i => Some (f i)
end.
(** would it be more efficient to use a path like in the above functions ? *)
Fixpoint choose (m: t) : option elt :=
match m with
| Leaf => None
| Node l o r => if o then Some 1 else
match choose l with
| None => omap xI (choose r)
| Some i => Some i~0
end
end.
Fixpoint min_elt (m: t) : option elt :=
match m with
| Leaf => None
| Node l o r =>
match min_elt l with
| None => if o then Some 1 else omap xI (min_elt r)
| Some i => Some i~0
end
end.
Fixpoint max_elt (m: t) : option elt :=
match m with
| Leaf => None
| Node l o r =>
match max_elt r with
| None => if o then Some 1 else omap xO (max_elt l)
| Some i => Some i~1
end
end.
(** lexicographic product, defined using a notation to keep things lazy *)
Notation lex u v := match u with Eq => v | Lt => Lt | Gt => Gt end.
Definition compare_bool a b :=
match a,b with
| false, true => Lt
| true, false => Gt
| _,_ => Eq
end.
Fixpoint compare_fun (m m': t): comparison :=
match m,m' with
| Leaf,_ => if is_empty m' then Eq else Lt
| _,Leaf => if is_empty m then Eq else Gt
| Node l o r,Node l' o' r' =>
lex (compare_bool o o') (lex (compare_fun l l') (compare_fun r r'))
end.
Definition In i t := mem i t = true.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
Definition eq := Equal.
Declare Equivalent Keys Equal eq.
Definition lt m m' := compare_fun m m' = Lt.
(** Specification of [In] *)
Lemma In_1: forall s x y, E.eq x y -> In x s -> In y s.
Proof. intros s x y ->. trivial. Qed.
(** Specification of [eq] *)
Lemma eq_refl: forall s, eq s s.
Proof. unfold eq, Equal. reflexivity. Qed.
Lemma eq_sym: forall s s', eq s s' -> eq s' s.
Proof. unfold eq, Equal. intros. symmetry. trivial. Qed.
Lemma eq_trans: forall s s' s'', eq s s' -> eq s' s'' -> eq s s''.
Proof. unfold eq, Equal. intros ? ? ? H ? ?. rewrite H. trivial. Qed.
(** Specification of [mem] *)
Lemma mem_1: forall s x, In x s -> mem x s = true.
Proof. unfold In. trivial. Qed.
Lemma mem_2: forall s x, mem x s = true -> In x s.
Proof. unfold In. trivial. Qed.
(** Additional lemmas for mem *)
Lemma mem_Leaf: forall x, mem x Leaf = false.
Proof. destruct x; trivial. Qed.
(** Specification of [empty] *)
Lemma empty_1 : Empty empty.
Proof. unfold Empty, In. intro. rewrite mem_Leaf. discriminate. Qed.
(** Specification of node *)
Lemma mem_node: forall x l o r, mem x (node l o r) = mem x (Node l o r).
Proof.
intros x l o r.
case o; trivial.
destruct l; trivial.
destruct r; trivial.
now destruct x.
Qed.
Local Opaque node.
(** Specification of [is_empty] *)
Lemma is_empty_spec: forall s, Empty s <-> is_empty s = true.
Proof.
unfold Empty, In.
induction s as [|l IHl o r IHr]; simpl.
- now split.
- rewrite <- 2andb_lazy_alt, 2andb_true_iff, <- IHl, <- IHr. clear IHl IHr.
destruct o; simpl; split.
+ intro H. elim (H 1). reflexivity.
+ intuition discriminate.
+ intro H. split.
* split.
-- reflexivity.
-- intro a. apply (H a~0).
* intro a. apply (H a~1).
+ intros H [a|a|]; apply H || intro; discriminate.
Qed.
Lemma is_empty_1: forall s, Empty s -> is_empty s = true.
Proof. intro. rewrite is_empty_spec. trivial. Qed.
Lemma is_empty_2: forall s, is_empty s = true -> Empty s.
Proof. intro. rewrite is_empty_spec. trivial. Qed.
(** Specification of [subset] *)
Lemma subset_Leaf_s: forall s, Leaf [<=] s.
Proof. intros s i Hi. elim (empty_1 Hi). Qed.
Lemma subset_spec: forall s s', s [<=] s' <-> subset s s' = true.
Proof.
induction s as [|l IHl o r IHr]; intros [|l' o' r']; simpl.
- split; intros.
+ reflexivity.
+ apply subset_Leaf_s.
- split; intros.
+ reflexivity.
+ apply subset_Leaf_s.
- rewrite <- 2andb_lazy_alt, 2andb_true_iff, <- 2is_empty_spec.
destruct o; simpl.
+ split.
* intro H. elim (@empty_1 1). apply H. reflexivity.
* intuition discriminate.
+ split; intro H.
* split.
-- split.
++ reflexivity.
++ unfold Empty. intros a H1. apply (@empty_1 (a~0)). apply H. assumption.
-- unfold Empty. intros a H1. apply (@empty_1 (a~1)). apply H. assumption.
* destruct H as [[_ Hl] Hr].
intros [i|i|] Hi.
-- elim (Hr i Hi).
-- elim (Hl i Hi).
-- discriminate.
- rewrite <- 2andb_lazy_alt, 2andb_true_iff, <- IHl, <- IHr. clear.
destruct o; simpl.
+ split; intro H.
* split.
-- split.
++ destruct o'; trivial.
specialize (H 1). unfold In in H. simpl in H. apply H. reflexivity.
++ intros i Hi. apply (H i~0). apply Hi.
-- intros i Hi. apply (H i~1). apply Hi.
* destruct H as [[Ho' Hl] Hr]. rewrite Ho'.
intros i Hi. destruct i.
-- apply (Hr i). assumption.
-- apply (Hl i). assumption.
-- assumption.
+ split; intros.
* split.
-- split.
++ reflexivity.
++ intros i Hi. apply (H i~0). apply Hi.
-- intros i Hi. apply (H i~1). apply Hi.
* intros i Hi. destruct i; destruct H as [[H Hl] Hr].
-- apply (Hr i). assumption.
-- apply (Hl i). assumption.
-- discriminate Hi.
Qed.
Lemma subset_1: forall s s', Subset s s' -> subset s s' = true.
Proof. intros s s'. apply -> subset_spec; trivial. Qed.
Lemma subset_2: forall s s', subset s s' = true -> Subset s s'.
Proof. intros s s'. apply <- subset_spec; trivial. Qed.
(** Specification of [equal] (via subset) *)
Lemma equal_subset: forall s s', equal s s' = subset s s' && subset s' s.
Proof.
induction s as [|l IHl o r IHr]; intros [|l' o' r']; simpl; trivial.
- destruct o.
+ reflexivity.
+ rewrite andb_comm. reflexivity.
- rewrite <- 6andb_lazy_alt. rewrite eq_iff_eq_true.
rewrite 7andb_true_iff, eqb_true_iff.
rewrite IHl, IHr, 2andb_true_iff. clear IHl IHr. intuition subst.
+ destruct o'; reflexivity.
+ destruct o'; reflexivity.
+ destruct o; auto. destruct o'; trivial.
Qed.
Lemma equal_spec: forall s s', Equal s s' <-> equal s s' = true.
Proof.
intros. rewrite equal_subset. rewrite andb_true_iff.
rewrite <- 2subset_spec. unfold Equal, Subset. firstorder.
Qed.
Lemma equal_1: forall s s', Equal s s' -> equal s s' = true.
Proof. intros s s'. apply -> equal_spec; trivial. Qed.
Lemma equal_2: forall s s', equal s s' = true -> Equal s s'.
Proof. intros s s'. apply <- equal_spec; trivial. Qed.
Lemma eq_dec : forall s s', { eq s s' } + { ~ eq s s' }.
Proof.
unfold eq.
intros. case_eq (equal s s'); intro H.
- left. apply equal_2, H.
- right. abstract (intro H'; rewrite (equal_1 H') in H; discriminate).
Defined.
(** (Specified) definition of [compare] *)
Lemma lex_Opp: forall u v u' v', u = CompOpp u' -> v = CompOpp v' ->
lex u v = CompOpp (lex u' v').
Proof. intros ? ? u' ? -> ->. case u'; reflexivity. Qed.
Lemma compare_bool_inv: forall b b',
compare_bool b b' = CompOpp (compare_bool b' b).
Proof. intros [|] [|]; reflexivity. Qed.
Lemma compare_inv: forall s s', compare_fun s s' = CompOpp (compare_fun s' s).
Proof.
induction s as [|l IHl o r IHr]; destruct s' as [|l' o' r']; trivial.
- unfold compare_fun. case is_empty; reflexivity.
- unfold compare_fun. case is_empty; reflexivity.
- simpl. rewrite compare_bool_inv.
case compare_bool; simpl; trivial; apply lex_Opp; auto.
Qed.
Lemma lex_Eq: forall u v, lex u v = Eq <-> u=Eq /\ v=Eq.
Proof. intros u v; destruct u; intuition discriminate. Qed.
Lemma compare_bool_Eq: forall b1 b2,
compare_bool b1 b2 = Eq <-> eqb b1 b2 = true.
Proof. intros [|] [|]; intuition discriminate. Qed.
Lemma compare_equal: forall s s', compare_fun s s' = Eq <-> equal s s' = true.
Proof.
induction s as [|l IHl o r IHr]; destruct s' as [|l' o' r'].
- simpl. tauto.
- unfold compare_fun, equal. case is_empty; intuition discriminate.
- unfold compare_fun, equal. case is_empty; intuition discriminate.
- simpl. rewrite <- 2andb_lazy_alt, 2andb_true_iff.
rewrite <- IHl, <- IHr, <- compare_bool_Eq. clear IHl IHr.
rewrite and_assoc. rewrite <- 2lex_Eq. reflexivity.
Qed.
Lemma compare_gt: forall s s', compare_fun s s' = Gt -> lt s' s.
Proof.
unfold lt. intros s s'. rewrite compare_inv.
case compare_fun; trivial; intros; discriminate.
Qed.
Lemma compare_eq: forall s s', compare_fun s s' = Eq -> eq s s'.
Proof.
unfold eq. intros s s'. rewrite compare_equal, equal_spec. trivial.
Qed.
Lemma compare : forall s s' : t, Compare lt eq s s'.
Proof.
intros. case_eq (compare_fun s s'); intro H.
- apply EQ. apply compare_eq, H.
- apply LT. assumption.
- apply GT. apply compare_gt, H.
Defined.
Section lt_spec.
Inductive ct: comparison -> comparison -> comparison -> Prop :=
| ct_xxx: forall x, ct x x x
| ct_xex: forall x, ct x Eq x
| ct_exx: forall x, ct Eq x x
| ct_glx: forall x, ct Gt Lt x
| ct_lgx: forall x, ct Lt Gt x.
Lemma ct_cxe: forall x, ct (CompOpp x) x Eq.
Proof. destruct x; constructor. Qed.
Lemma ct_xce: forall x, ct x (CompOpp x) Eq.
Proof. destruct x; constructor. Qed.
Lemma ct_lxl: forall x, ct Lt x Lt.
Proof. destruct x; constructor. Qed.
Lemma ct_gxg: forall x, ct Gt x Gt.
Proof. destruct x; constructor. Qed.
Lemma ct_xll: forall x, ct x Lt Lt.
Proof. destruct x; constructor. Qed.
Lemma ct_xgg: forall x, ct x Gt Gt.
Proof. destruct x; constructor. Qed.
Local Hint Constructors ct: ct.
Local Hint Resolve ct_cxe ct_xce ct_lxl ct_xll ct_gxg ct_xgg: ct.
Ltac ct := trivial with ct.
Lemma ct_lex: forall u v w u' v' w',
ct u v w -> ct u' v' w' -> ct (lex u u') (lex v v') (lex w w').
Proof.
intros u v w u' v' w' H H'.
inversion_clear H; inversion_clear H'; ct; destruct w; ct; destruct w'; ct.
Qed.
Lemma ct_compare_bool:
forall a b c, ct (compare_bool a b) (compare_bool b c) (compare_bool a c).
Proof.
intros [|] [|] [|]; constructor.
Qed.
Lemma compare_x_Leaf: forall s,
compare_fun s Leaf = if is_empty s then Eq else Gt.
Proof.
intros. rewrite compare_inv. simpl. case (is_empty s); reflexivity.
Qed.
Lemma compare_empty_x: forall a, is_empty a = true ->
forall b, compare_fun a b = if is_empty b then Eq else Lt.
Proof.
induction a as [|l IHl o r IHr]; trivial.
destruct o.
- intro; discriminate.
- simpl is_empty. rewrite <- andb_lazy_alt, andb_true_iff.
intros [Hl Hr].
destruct b as [|l' [|] r']; simpl compare_fun; trivial.
+ rewrite Hl, Hr. trivial.
+ rewrite (IHl Hl), (IHr Hr). simpl.
case (is_empty l'); case (is_empty r'); trivial.
Qed.
Lemma compare_x_empty: forall a, is_empty a = true ->
forall b, compare_fun b a = if is_empty b then Eq else Gt.
Proof.
setoid_rewrite <- compare_x_Leaf.
intros. rewrite 2(compare_inv b), (compare_empty_x _ H). reflexivity.
Qed.
Lemma ct_compare_fun:
forall a b c, ct (compare_fun a b) (compare_fun b c) (compare_fun a c).
Proof.
induction a as [|l IHl o r IHr]; intros s' s''.
- destruct s' as [|l' o' r']; destruct s'' as [|l'' o'' r'']; ct.
+ rewrite compare_inv. ct.
+ unfold compare_fun at 1. case_eq (is_empty (Node l' o' r')); intro H'.
* rewrite (compare_empty_x _ H'). ct.
* unfold compare_fun at 2. case_eq (is_empty (Node l'' o'' r'')); intro H''.
-- rewrite (compare_x_empty _ H''), H'. ct.
-- ct.
- destruct s' as [|l' o' r']; destruct s'' as [|l'' o'' r''].
+ ct.
+ unfold compare_fun at 2. rewrite compare_x_Leaf.
case_eq (is_empty (Node l o r)); intro H.
* rewrite (compare_empty_x _ H). ct.
* case_eq (is_empty (Node l'' o'' r'')); intro H''.
-- rewrite (compare_x_empty _ H''), H. ct.
-- ct.
+ rewrite 2 compare_x_Leaf.
case_eq (is_empty (Node l o r)); intro H.
* rewrite compare_inv, (compare_x_empty _ H). ct.
* case_eq (is_empty (Node l' o' r')); intro H'.
-- rewrite (compare_x_empty _ H'), H. ct.
-- ct.
+ simpl compare_fun. apply ct_lex.
* apply ct_compare_bool.
* apply ct_lex; trivial.
Qed.
End lt_spec.
Lemma lt_trans: forall s s' s'', lt s s' -> lt s' s'' -> lt s s''.
Proof.
unfold lt. intros a b c. assert (H := ct_compare_fun a b c).
inversion_clear H; trivial; intros; discriminate.
Qed.
Lemma lt_not_eq: forall s s', lt s s' -> ~ eq s s'.
Proof.
unfold lt, eq. intros s s' H H'.
rewrite equal_spec, <- compare_equal in H'. congruence.
Qed.
(** Specification of [add] *)
Lemma add_spec: forall x y s, In y (add x s) <-> x=y \/ In y s.
Proof.
unfold In. induction x; intros [y|y|] [|l o r]; simpl mem;
try (rewrite IHx; clear IHx); rewrite ?mem_Leaf; intuition congruence.
Qed.
Lemma add_1: forall s x y, x = y -> In y (add x s).
Proof. intros. apply <- add_spec. left. assumption. Qed.
Lemma add_2: forall s x y, In y s -> In y (add x s).
Proof. intros. apply <- add_spec. right. assumption. Qed.
Lemma add_3: forall s x y, x<>y -> In y (add x s) -> In y s.
Proof.
intros s x y H. rewrite add_spec. intros [->|?]; trivial. elim H; trivial.
Qed.
(** Specification of [remove] *)
Lemma remove_spec: forall x y s, In y (remove x s) <-> x<>y /\ In y s.
Proof.
unfold In.
induction x; intros [y|y|] [|l o r]; simpl remove; rewrite ?mem_node;
simpl mem; try (rewrite IHx; clear IHx); rewrite ?mem_Leaf;
intuition congruence.
Qed.
Lemma remove_1: forall s x y, x=y -> ~ In y (remove x s).
Proof. intros. rewrite remove_spec. tauto. Qed.
Lemma remove_2: forall s x y, x<>y -> In y s -> In y (remove x s).
Proof. intros. rewrite remove_spec. split; assumption. Qed.
Lemma remove_3: forall s x y, In y (remove x s) -> In y s.
Proof. intros s x y. rewrite remove_spec. tauto. Qed.
(** Specification of [singleton] *)
Lemma singleton_1: forall x y, In y (singleton x) -> x=y.
Proof.
unfold singleton. intros x y. rewrite add_spec.
unfold In. rewrite mem_Leaf. intuition discriminate.
Qed.
Lemma singleton_2: forall x y, x = y -> In y (singleton x).
Proof.
unfold singleton. intros. apply add_1. assumption.
Qed.
(** Specification of [union] *)
Lemma union_spec: forall x s s', In x (union s s') <-> In x s \/ In x s'.
Proof.
unfold In.
induction x; destruct s; destruct s'; simpl union; simpl mem;
try (rewrite IHx; clear IHx); try intuition congruence.
apply orb_true_iff.
Qed.
Lemma union_1: forall s s' x, In x (union s s') -> In x s \/ In x s'.
Proof. intros. apply -> union_spec. assumption. Qed.
Lemma union_2: forall s s' x, In x s -> In x (union s s').
Proof. intros. apply <- union_spec. left. assumption. Qed.
Lemma union_3: forall s s' x, In x s' -> In x (union s s').
Proof. intros. apply <- union_spec. right. assumption. Qed.
(** Specification of [inter] *)
Lemma inter_spec: forall x s s', In x (inter s s') <-> In x s /\ In x s'.
Proof.
unfold In.
induction x; destruct s; destruct s'; simpl inter; rewrite ?mem_node;
simpl mem; try (rewrite IHx; clear IHx); try intuition congruence.
apply andb_true_iff.
Qed.
Lemma inter_1: forall s s' x, In x (inter s s') -> In x s.
Proof. intros s s' x. rewrite inter_spec. tauto. Qed.
Lemma inter_2: forall s s' x, In x (inter s s') -> In x s'.
Proof. intros s s' x. rewrite inter_spec. tauto. Qed.
Lemma inter_3: forall s s' x, In x s -> In x s' -> In x (inter s s').
Proof. intros. rewrite inter_spec. split; assumption. Qed.
(** Specification of [diff] *)
Lemma diff_spec: forall x s s', In x (diff s s') <-> In x s /\ ~ In x s'.
Proof.
unfold In.
induction x; destruct s; destruct s' as [|l' o' r']; simpl diff;
rewrite ?mem_node; simpl mem;
try (rewrite IHx; clear IHx); try intuition congruence.
rewrite andb_true_iff. destruct o'; intuition discriminate.
Qed.
Lemma diff_1: forall s s' x, In x (diff s s') -> In x s.
Proof. intros s s' x. rewrite diff_spec. tauto. Qed.
Lemma diff_2: forall s s' x, In x (diff s s') -> ~ In x s'.
Proof. intros s s' x. rewrite diff_spec. tauto. Qed.
Lemma diff_3: forall s s' x, In x s -> ~ In x s' -> In x (diff s s').
Proof. intros. rewrite diff_spec. split; assumption. Qed.
(** Specification of [fold] *)
Lemma fold_1: forall s (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
unfold fold, elements. intros s A i f. revert s i.
set (f' := fun a e => f e a).
assert (H: forall s i j acc,
fold_left f' acc (xfold f s i j) =
fold_left f' (xelements s j acc) i).
- induction s as [|l IHl o r IHr]; intros; trivial.
destruct o; simpl xelements; simpl xfold.
+ rewrite IHr, <- IHl. reflexivity.
+ rewrite IHr. apply IHl.
- intros. exact (H s i 1 nil).
Qed.
(** Specification of [cardinal] *)
Lemma cardinal_1: forall s, cardinal s = length (elements s).
Proof.
unfold elements.
assert (H: forall s j acc,
(cardinal s + length acc)%nat = length (xelements s j acc)).
- induction s as [|l IHl b r IHr]; intros j acc; simpl; trivial. destruct b.
+ rewrite <- IHl. simpl. rewrite <- IHr.
rewrite <- plus_n_Sm, Nat.add_assoc. reflexivity.
+ rewrite <- IHl, <- IHr. rewrite Nat.add_assoc. reflexivity.
- intros. rewrite <- H. simpl. rewrite Nat.add_comm. reflexivity.
Qed.
(** Specification of [filter] *)
Lemma xfilter_spec: forall f s x i,
In x (xfilter f s i) <-> In x s /\ f (i@x) = true.
Proof.
intro f. unfold In.
induction s as [|l IHl o r IHr]; intros x i; simpl xfilter.
- rewrite mem_Leaf. intuition discriminate.
- rewrite mem_node. destruct x; simpl.
+ rewrite IHr. reflexivity.
+ rewrite IHl. reflexivity.
+ rewrite <- andb_lazy_alt. apply andb_true_iff.
Qed.
Lemma filter_1 : forall s x f, @compat_bool elt E.eq f ->
In x (filter f s) -> In x s.
Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.
Lemma filter_2 : forall s x f, @compat_bool elt E.eq f ->
In x (filter f s) -> f x = true.
Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.
Lemma filter_3 : forall s x f, @compat_bool elt E.eq f -> In x s ->
f x = true -> In x (filter f s).
Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.
(** Specification of [for_all] *)
Lemma xforall_spec: forall f s i,
xforall f s i = true <-> For_all (fun x => f (i@x) = true) s.
Proof.
unfold For_all, In. intro f.
induction s as [|l IHl o r IHr]; intros i; simpl.
- now split.
- rewrite <- 2andb_lazy_alt, <- orb_lazy_alt, 2 andb_true_iff.
rewrite IHl, IHr. clear IHl IHr.
split.
+ intros [[Hi Hr] Hl] x. destruct x; simpl; intro H.
* apply Hr, H.
* apply Hl, H.
* rewrite H in Hi. assumption.
+ intro H; intuition.
* specialize (H 1). destruct o.
-- apply H. reflexivity.
-- reflexivity.
* apply H. assumption.
* apply H. assumption.
Qed.
Lemma for_all_1 : forall s f, @compat_bool elt E.eq f ->
For_all (fun x => f x = true) s -> for_all f s = true.
Proof. intros s f _. unfold for_all. rewrite xforall_spec. trivial. Qed.
Lemma for_all_2 : forall s f, @compat_bool elt E.eq f ->
for_all f s = true -> For_all (fun x => f x = true) s.
Proof. intros s f _. unfold for_all. rewrite xforall_spec. trivial. Qed.
(** Specification of [exists] *)
Lemma xexists_spec: forall f s i,
xexists f s i = true <-> Exists (fun x => f (i@x) = true) s.
Proof.
unfold Exists, In. intro f.
induction s as [|l IHl o r IHr]; intros i; simpl.
- split; [ discriminate | now intros [ _ [? _]]].
- rewrite <- 2orb_lazy_alt, 2orb_true_iff, <- andb_lazy_alt, andb_true_iff.
rewrite IHl, IHr. clear IHl IHr.
split.
+ intros [[Hi|[x Hr]]|[x Hl]].
* exists 1. exact Hi.
* exists x~1. exact Hr.
* exists x~0. exact Hl.
+ intros [[x|x|] H]; eauto.
Qed.
Lemma exists_1 : forall s f, @compat_bool elt E.eq f ->
Exists (fun x => f x = true) s -> exists_ f s = true.
Proof. intros s f _. unfold exists_. rewrite xexists_spec. trivial. Qed.
Lemma exists_2 : forall s f, @compat_bool elt E.eq f ->
exists_ f s = true -> Exists (fun x => f x = true) s.
Proof. intros s f _. unfold exists_. rewrite xexists_spec. trivial. Qed.
(** Specification of [partition] *)
Lemma partition_filter : forall s f,
partition f s = (filter f s, filter (fun x => negb (f x)) s).
Proof.
unfold partition, filter. intros s f. generalize 1 as j.
induction s as [|l IHl o r IHr]; intro j.
- reflexivity.
- destruct o; simpl; rewrite IHl, IHr; reflexivity.
Qed.
Lemma partition_1 : forall s f, @compat_bool elt E.eq f ->
Equal (fst (partition f s)) (filter f s).
Proof. intros. rewrite partition_filter. apply eq_refl. Qed.
Lemma partition_2 : forall s f, @compat_bool elt E.eq f ->
Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
Proof. intros. rewrite partition_filter. apply eq_refl. Qed.
(** Specification of [elements] *)
Notation InL := (InA E.eq).
Lemma xelements_spec: forall s j acc y,
InL y (xelements s j acc)
<->
InL y acc \/ exists x, y=(j@x) /\ mem x s = true.
Proof.
induction s as [|l IHl o r IHr]; simpl.
- intros. split; intro H.
+ left. assumption.
+ destruct H as [H|[x [Hx Hx']]].
* assumption.
* discriminate.
- intros j acc y. case o.
+ rewrite IHl. rewrite InA_cons. rewrite IHr. clear IHl IHr. split.
* intros [[H|[H|[x [-> H]]]]|[x [-> H]]]; eauto.
-- right. exists x~1. auto.
-- right. exists x~0. auto.
* intros [H|[x [-> H]]].
-- eauto.
-- destruct x.
++ left. right. right. exists x; auto.
++ right. exists x; auto.
++ left. left. reflexivity.
+ rewrite IHl, IHr. clear IHl IHr. split.
* intros [[H|[x [-> H]]]|[x [-> H]]].
-- eauto.
-- right. exists x~1. auto.
-- right. exists x~0. auto.
* intros [H|[x [-> H]]].
-- eauto.
-- destruct x.
++ left. right. exists x; auto.
++ right. exists x; auto.
++ discriminate.
Qed.
Lemma elements_1: forall s x, In x s -> InL x (elements s).
Proof.
unfold elements, In. intros.
rewrite xelements_spec. right. exists x. auto.
Qed.
Lemma elements_2: forall s x, InL x (elements s) -> In x s.
Proof.
unfold elements, In. intros s x H.
rewrite xelements_spec in H. destruct H as [H|[y [H H']]].
- inversion_clear H.
- rewrite H. assumption.
Qed.
Lemma lt_rev_append: forall j x y, E.lt x y -> E.lt (j@x) (j@y).
Proof. induction j; intros; simpl; auto. Qed.
Lemma elements_3: forall s, sort E.lt (elements s).
Proof.
unfold elements.
assert (H: forall s j acc,
sort E.lt acc ->
(forall x y, In x s -> InL y acc -> E.lt (j@x) y) ->
sort E.lt (xelements s j acc)). {
induction s as [|l IHl o r IHr]; simpl; trivial.
intros j acc Hacc Hsacc. destruct o.
- apply IHl.
+ constructor.
* apply IHr.
-- apply Hacc.
-- intros x y Hx Hy. apply Hsacc; assumption.
* case_eq (xelements r j~1 acc).
-- constructor.
-- intros z q H. constructor.
assert (H': InL z (xelements r j~1 acc)). {
rewrite H. constructor. reflexivity.
}
clear H q. rewrite xelements_spec in H'. destruct H' as [Hy|[x [-> Hx]]].
++ apply (Hsacc 1 z); trivial. reflexivity.
++ simpl. apply lt_rev_append. exact I.
+ intros x y Hx Hy. inversion_clear Hy.
* rewrite H. simpl. apply lt_rev_append. exact I.
* rewrite xelements_spec in H. destruct H as [Hy|[z [-> Hy]]].
-- apply Hsacc; assumption.
-- simpl. apply lt_rev_append. exact I.
- apply IHl.
+ apply IHr.
* apply Hacc.
* intros x y Hx Hy. apply Hsacc; assumption.
+ intros x y Hx Hy. rewrite xelements_spec in Hy.
destruct Hy as [Hy|[z [-> Hy]]].
* apply Hsacc; assumption.
* simpl. apply lt_rev_append. exact I.
}
intros. apply H.
- constructor.
- intros x y _ H'. inversion H'.
Qed.
Lemma elements_3w: forall s, NoDupA E.eq (elements s).
Proof.
intro. apply SortA_NoDupA with E.lt.
- constructor.
+ intro. apply E.eq_refl.
+ intro. apply E.eq_sym.
+ intro. apply E.eq_trans.
- constructor.
+ intros x H. apply E.lt_not_eq in H. apply H. reflexivity.
+ intro. apply E.lt_trans.
- solve_proper.
- apply elements_3.
Qed.
(** Specification of [choose] *)
Lemma choose_1: forall s x, choose s = Some x -> In x s.
Proof.
induction s as [| l IHl o r IHr]; simpl.
- intros. discriminate.
- destruct o.
+ intros x H. injection H; intros; subst. reflexivity.
+ revert IHl. case choose.
* intros p Hp x [= <-]. apply Hp.
reflexivity.
* intros _ x. revert IHr. case choose.
-- intros p Hp [= <-]. apply Hp.
reflexivity.
-- intros. discriminate.
Qed.
Lemma choose_2: forall s, choose s = None -> Empty s.
Proof.
unfold Empty, In. intros s H.
induction s as [|l IHl o r IHr].
- intro. apply empty_1.
- destruct o.
+ discriminate.
+ simpl in H. destruct (choose l).
* discriminate.
* destruct (choose r).
-- discriminate.
-- intros [a|a|].
++ apply IHr. reflexivity.
++ apply IHl. reflexivity.
++ discriminate.
Qed.
Lemma choose_empty: forall s, is_empty s = true -> choose s = None.
Proof.
intros s Hs. case_eq (choose s); trivial.
intros p Hp. apply choose_1 in Hp. apply is_empty_2 in Hs. elim (Hs _ Hp).
Qed.
Lemma choose_3': forall s s', Equal s s' -> choose s = choose s'.
Proof.
setoid_rewrite equal_spec.
induction s as [|l IHl o r IHr].
- intros. symmetry. apply choose_empty. assumption.
- destruct s' as [|l' o' r'].
+ generalize (Node l o r) as s. simpl. intros. apply choose_empty.
rewrite <- equal_spec in H. apply eq_sym in H. rewrite equal_spec in H.
assumption.
+ simpl. rewrite <- 2andb_lazy_alt, 2andb_true_iff, eqb_true_iff.
intros [[<- Hl] Hr]. rewrite (IHl _ Hl), (IHr _ Hr). reflexivity.
Qed.
Lemma choose_3: forall s s' x y,
choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y.
Proof. intros s s' x y Hx Hy H. apply choose_3' in H. congruence. Qed.
(** Specification of [min_elt] *)
Lemma min_elt_1: forall s x, min_elt s = Some x -> In x s.
Proof.
unfold In.
induction s as [| l IHl o r IHr]; simpl.
- intros. discriminate.
- intros x. destruct (min_elt l); intros.
+ injection H as [= <-]. apply IHl. reflexivity.
+ destruct o; simpl.
* injection H as [= <-]. reflexivity.
* destruct (min_elt r); simpl in *.
-- injection H as [= <-]. apply IHr. reflexivity.
-- discriminate.
Qed.
Lemma min_elt_3: forall s, min_elt s = None -> Empty s.
Proof.
unfold Empty, In. intros s H.
induction s as [|l IHl o r IHr].
- intro. apply empty_1.
- intros [a|a|].
+ apply IHr. revert H. clear. simpl. destruct (min_elt r); trivial.
case min_elt; intros; try discriminate. destruct o; discriminate.
+ apply IHl. revert H. clear. simpl. destruct (min_elt l); trivial.
intro; discriminate.
+ revert H. clear. simpl. case min_elt; intros; try discriminate.
destruct o; discriminate.
Qed.
Lemma min_elt_2: forall s x y, min_elt s = Some x -> In y s -> ~ E.lt y x.
Proof.
unfold In.
induction s as [|l IHl o r IHr]; intros x y H H'.
- discriminate.
- simpl in H. case_eq (min_elt l).
+ intros p Hp. rewrite Hp in H. injection H as [= <-].
destruct y as [z|z|]; simpl; intro; trivial. apply (IHl p z); trivial.
+ intro Hp; rewrite Hp in H. apply min_elt_3 in Hp.
destruct o.
* injection H as [= <-]. intros Hl.
destruct y as [z|z|]; simpl; trivial. elim (Hp _ H').
* destruct (min_elt r).
-- injection H as [= <-].
destruct y as [z|z|].
++ apply (IHr e z); trivial.
++ elim (Hp _ H').
++ discriminate.
-- discriminate.
Qed.
(** Specification of [max_elt] *)
Lemma max_elt_1: forall s x, max_elt s = Some x -> In x s.
Proof.
unfold In.
induction s as [| l IHl o r IHr]; simpl.
- intros. discriminate.
- intros x. destruct (max_elt r); intros.
+ injection H as [= <-]. apply IHr. reflexivity.
+ destruct o; simpl.
* injection H as [= <-]. reflexivity.
* destruct (max_elt l); simpl in *.
-- injection H as [= <-]. apply IHl. reflexivity.
-- discriminate.
Qed.
Lemma max_elt_3: forall s, max_elt s = None -> Empty s.
Proof.
unfold Empty, In. intros s H.
induction s as [|l IHl o r IHr].
- intro. apply empty_1.
- intros [a|a|].
+ apply IHr. revert H. clear. simpl. destruct (max_elt r); trivial.
intro; discriminate.
+ apply IHl. revert H. clear. simpl. destruct (max_elt l); trivial.
case max_elt; intros; try discriminate. destruct o; discriminate.
+ revert H. clear. simpl. case max_elt; intros; try discriminate.
destruct o; discriminate.
Qed.
Lemma max_elt_2: forall s x y, max_elt s = Some x -> In y s -> ~ E.lt x y.
Proof.
unfold In.
induction s as [|l IHl o r IHr]; intros x y H H'.
- discriminate.
- simpl in H. case_eq (max_elt r).
+ intros p Hp. rewrite Hp in H. injection H as [= <-].
destruct y as [z|z|]; simpl; intro; trivial. apply (IHr p z); trivial.
+ intro Hp; rewrite Hp in H. apply max_elt_3 in Hp.
destruct o.
* injection H as [= <-]. intros Hl.
destruct y as [z|z|]; simpl; trivial. elim (Hp _ H').
* destruct (max_elt l).
-- injection H as [= <-].
destruct y as [z|z|].
++ elim (Hp _ H').
++ apply (IHl e z); trivial.
++ discriminate.
-- discriminate.
Qed.
End PositiveSet.
|