1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Finite sets library *)
(** This functor derives additional properties from [FSetInterface.S].
Contrary to the functor in [FSetEqProperties] it uses
predicates over sets instead of sets operations, i.e.
[In x s] instead of [mem x s=true],
[Equal s s'] instead of [equal s s'=true], etc. *)
From Stdlib Require Export FSetInterface.
From Stdlib Require Import PeanoNat DecidableTypeEx FSetFacts FSetDecide.
Set Implicit Arguments.
Unset Strict Implicit.
#[global]
Hint Unfold transpose compat_op Proper respectful : fset.
#[global]
Hint Extern 1 (Equivalence _) => constructor; congruence : fset.
(** First, a functor for Weak Sets in functorial version. *)
Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Module Import Dec := WDecide_fun E M.
Module Import FM := Dec.F (* FSetFacts.WFacts_fun E M *).
Import M.
Lemma In_dec : forall x s, {In x s} + {~ In x s}.
Proof.
intros; generalize (mem_iff s x); case (mem x s); intuition auto with bool.
Qed.
Definition Add x s s' := forall y, In y s' <-> E.eq x y \/ In y s.
Lemma Add_Equal : forall x s s', Add x s s' <-> s' [=] add x s.
Proof.
unfold Add.
split; intros.
- red; intros.
rewrite H; clear H.
fsetdec.
- fsetdec.
Qed.
Ltac expAdd := repeat rewrite Add_Equal.
Section BasicProperties.
Variable s s' s'' s1 s2 s3 : t.
Variable x x' : elt.
Lemma equal_refl : s[=]s.
Proof. fsetdec. Qed.
Lemma equal_sym : s[=]s' -> s'[=]s.
Proof. fsetdec. Qed.
Lemma equal_trans : s1[=]s2 -> s2[=]s3 -> s1[=]s3.
Proof. fsetdec. Qed.
Lemma subset_refl : s[<=]s.
Proof. fsetdec. Qed.
Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
Proof. fsetdec. Qed.
Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
Proof. fsetdec. Qed.
Lemma subset_equal : s[=]s' -> s[<=]s'.
Proof. fsetdec. Qed.
Lemma subset_empty : empty[<=]s.
Proof. fsetdec. Qed.
Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
Proof. fsetdec. Qed.
Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
Proof. fsetdec. Qed.
Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
Proof. fsetdec. Qed.
Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
Proof. fsetdec. Qed.
Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
Proof. fsetdec. Qed.
Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
Proof. intuition fsetdec. Qed.
Lemma empty_is_empty_1 : Empty s -> s[=]empty.
Proof. fsetdec. Qed.
Lemma empty_is_empty_2 : s[=]empty -> Empty s.
Proof. fsetdec. Qed.
Lemma add_equal : In x s -> add x s [=] s.
Proof. fsetdec. Qed.
Lemma add_add : add x (add x' s) [=] add x' (add x s).
Proof. fsetdec. Qed.
Lemma remove_equal : ~ In x s -> remove x s [=] s.
Proof. fsetdec. Qed.
Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
Proof. fsetdec. Qed.
Lemma add_remove : In x s -> add x (remove x s) [=] s.
Proof. fsetdec. Qed.
Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
Proof. fsetdec. Qed.
Lemma singleton_equal_add : singleton x [=] add x empty.
Proof. fsetdec. Qed.
Lemma remove_singleton_empty :
In x s -> remove x s [=] empty -> singleton x [=] s.
Proof. fsetdec. Qed.
Lemma union_sym : union s s' [=] union s' s.
Proof. fsetdec. Qed.
Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
Proof. fsetdec. Qed.
Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
Proof. fsetdec. Qed.
Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
Proof. fsetdec. Qed.
Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
Proof. fsetdec. Qed.
Lemma add_union_singleton : add x s [=] union (singleton x) s.
Proof. fsetdec. Qed.
Lemma union_add : union (add x s) s' [=] add x (union s s').
Proof. fsetdec. Qed.
Lemma union_remove_add_1 :
union (remove x s) (add x s') [=] union (add x s) (remove x s').
Proof. fsetdec. Qed.
Lemma union_remove_add_2 : In x s ->
union (remove x s) (add x s') [=] union s s'.
Proof. fsetdec. Qed.
Lemma union_subset_1 : s [<=] union s s'.
Proof. fsetdec. Qed.
Lemma union_subset_2 : s' [<=] union s s'.
Proof. fsetdec. Qed.
Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
Proof. fsetdec. Qed.
Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
Proof. fsetdec. Qed.
Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
Proof. fsetdec. Qed.
Lemma empty_union_1 : Empty s -> union s s' [=] s'.
Proof. fsetdec. Qed.
Lemma empty_union_2 : Empty s -> union s' s [=] s'.
Proof. fsetdec. Qed.
Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
Proof. fsetdec. Qed.
Lemma inter_sym : inter s s' [=] inter s' s.
Proof. fsetdec. Qed.
Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
Proof. fsetdec. Qed.
Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
Proof. fsetdec. Qed.
Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
Proof. fsetdec. Qed.
Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
Proof. fsetdec. Qed.
Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
Proof. fsetdec. Qed.
Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
Proof. fsetdec. Qed.
Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
Proof. fsetdec. Qed.
Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
Proof. fsetdec. Qed.
Lemma empty_inter_1 : Empty s -> Empty (inter s s').
Proof. fsetdec. Qed.
Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
Proof. fsetdec. Qed.
Lemma inter_subset_1 : inter s s' [<=] s.
Proof. fsetdec. Qed.
Lemma inter_subset_2 : inter s s' [<=] s'.
Proof. fsetdec. Qed.
Lemma inter_subset_3 :
s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
Proof. fsetdec. Qed.
Lemma empty_diff_1 : Empty s -> Empty (diff s s').
Proof. fsetdec. Qed.
Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
Proof. fsetdec. Qed.
Lemma diff_subset : diff s s' [<=] s.
Proof. fsetdec. Qed.
Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
Proof. fsetdec. Qed.
Lemma remove_diff_singleton :
remove x s [=] diff s (singleton x).
Proof. fsetdec. Qed.
Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
Proof. fsetdec. Qed.
Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
Proof. fsetdec. Qed.
Lemma Add_add : Add x s (add x s).
Proof. expAdd; fsetdec. Qed.
Lemma Add_remove : In x s -> Add x (remove x s) s.
Proof. expAdd; fsetdec. Qed.
Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
Proof. expAdd; fsetdec. Qed.
Lemma inter_Add :
In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
Proof. expAdd; fsetdec. Qed.
Lemma union_Equal :
In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
Proof. expAdd; fsetdec. Qed.
Lemma inter_Add_2 :
~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
Proof. expAdd; fsetdec. Qed.
End BasicProperties.
#[global]
Hint Immediate equal_sym add_remove remove_add union_sym inter_sym: set.
#[global]
Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym
subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
remove_equal singleton_equal_add union_subset_equal union_equal_1
union_equal_2 union_assoc add_union_singleton union_add union_subset_1
union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
Equal_remove add_add : set.
(** * Properties of elements *)
Lemma elements_Empty : forall s, Empty s <-> elements s = nil.
Proof.
intros.
unfold Empty.
split; intros.
- assert (forall a, ~ List.In a (elements s)). {
red; intros.
apply (H a).
rewrite elements_iff.
rewrite InA_alt; exists a; auto.
}
destruct (elements s); auto.
elim (H0 e); simpl; auto.
- red; intros.
rewrite elements_iff in H0.
rewrite InA_alt in H0; destruct H0.
rewrite H in H0; destruct H0 as (_,H0); inversion H0.
Qed.
Lemma elements_empty : elements empty = nil.
Proof.
rewrite <-elements_Empty; auto with set.
Qed.
(** * Conversions between lists and sets *)
Definition of_list (l : list elt) := List.fold_right add empty l.
Definition to_list := elements.
Lemma of_list_1 : forall l x, In x (of_list l) <-> InA E.eq x l.
Proof.
induction l; simpl; intro x.
- rewrite empty_iff, InA_nil. intuition.
- rewrite add_iff, InA_cons, IHl. intuition.
Qed.
Lemma of_list_2 : forall l, equivlistA E.eq (to_list (of_list l)) l.
Proof.
unfold to_list; red; intros.
rewrite <- elements_iff; apply of_list_1.
Qed.
Lemma of_list_3 : forall s, of_list (to_list s) [=] s.
Proof.
unfold to_list; red; intros.
rewrite of_list_1; symmetry; apply elements_iff.
Qed.
(** * Fold *)
Section Fold.
(** Alternative specification via [fold_right] *)
Lemma fold_spec_right (s:t)(A:Type)(i:A)(f : elt -> A -> A) :
fold f s i = List.fold_right f i (rev (elements s)).
Proof.
rewrite fold_1. symmetry. apply fold_left_rev_right.
Qed.
Notation NoDup := (NoDupA E.eq).
Notation InA := (InA E.eq).
(** ** Induction principles for fold (contributed by S. Lescuyer) *)
(** In the following lemma, the step hypothesis is deliberately restricted
to the precise set s we are considering. *)
Theorem fold_rec :
forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
(forall s', Empty s' -> P s' i) ->
(forall x a s' s'', In x s -> ~In x s' -> Add x s' s'' ->
P s' a -> P s'' (f x a)) ->
P s (fold f s i).
Proof.
intros A P f i s Pempty Pstep.
rewrite fold_spec_right. set (l:=rev (elements s)).
assert (Pstep' : forall x a s' s'', InA x l -> ~In x s' -> Add x s' s'' ->
P s' a -> P s'' (f x a)). {
intros; eapply Pstep; eauto.
rewrite elements_iff, <- InA_rev; auto.
}
assert (Hdup : NoDup l) by
(unfold l; eauto using elements_3w, NoDupA_rev with *).
assert (Hsame : forall x, In x s <-> InA x l) by
(unfold l; intros; rewrite elements_iff, InA_rev; intuition).
clear Pstep; clearbody l; revert s Hsame; induction l.
- (* empty *)
intros s Hsame; simpl.
apply Pempty. intro x. rewrite Hsame, InA_nil; intuition.
- (* step *)
intros s Hsame; simpl.
apply Pstep' with (of_list l); auto.
+ inversion_clear Hdup; rewrite of_list_1; auto.
+ red. intros. rewrite Hsame, of_list_1, InA_cons; intuition.
+ apply IHl.
* intros; eapply Pstep'; eauto.
* inversion_clear Hdup; auto.
* exact (of_list_1 l).
Qed.
(** Same, with [empty] and [add] instead of [Empty] and [Add]. In this
case, [P] must be compatible with equality of sets *)
Theorem fold_rec_bis :
forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
(forall s s' a, s[=]s' -> P s a -> P s' a) ->
(P empty i) ->
(forall x a s', In x s -> ~In x s' -> P s' a -> P (add x s') (f x a)) ->
P s (fold f s i).
Proof.
intros A P f i s Pmorphism Pempty Pstep.
apply fold_rec; intros.
- apply Pmorphism with empty; auto with set.
- rewrite Add_Equal in H1; auto with set.
apply Pmorphism with (add x s'); auto with set.
Qed.
Lemma fold_rec_nodep :
forall (A:Type)(P : A -> Type)(f : elt -> A -> A)(i:A)(s:t),
P i -> (forall x a, In x s -> P a -> P (f x a)) ->
P (fold f s i).
Proof.
intros; apply fold_rec_bis with (P:=fun _ => P); auto.
Qed.
(** [fold_rec_weak] is a weaker principle than [fold_rec_bis] :
the step hypothesis must here be applicable to any [x].
At the same time, it looks more like an induction principle,
and hence can be easier to use. *)
Lemma fold_rec_weak :
forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A),
(forall s s' a, s[=]s' -> P s a -> P s' a) ->
P empty i ->
(forall x a s, ~In x s -> P s a -> P (add x s) (f x a)) ->
forall s, P s (fold f s i).
Proof.
intros; apply fold_rec_bis; auto.
Qed.
Lemma fold_rel :
forall (A B:Type)(R : A -> B -> Type)
(f : elt -> A -> A)(g : elt -> B -> B)(i : A)(j : B)(s : t),
R i j ->
(forall x a b, In x s -> R a b -> R (f x a) (g x b)) ->
R (fold f s i) (fold g s j).
Proof.
intros A B R f g i j s Rempty Rstep.
rewrite 2 fold_spec_right. set (l:=rev (elements s)).
assert (Rstep' : forall x a b, InA x l -> R a b -> R (f x a) (g x b)) by
(intros; apply Rstep; auto; rewrite elements_iff, <- InA_rev; auto).
clearbody l; clear Rstep s.
induction l; simpl; auto.
Qed.
(** From the induction principle on [fold], we can deduce some general
induction principles on sets. *)
Lemma set_induction :
forall P : t -> Type,
(forall s, Empty s -> P s) ->
(forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
forall s, P s.
Proof.
intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto.
Qed.
Lemma set_induction_bis :
forall P : t -> Type,
(forall s s', s [=] s' -> P s -> P s') ->
P empty ->
(forall x s, ~In x s -> P s -> P (add x s)) ->
forall s, P s.
Proof.
intros.
apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto.
Qed.
(** [fold] can be used to reconstruct the same initial set. *)
Lemma fold_identity : forall s, fold add s empty [=] s.
Proof.
intros.
apply fold_rec with (P:=fun s acc => acc[=]s); auto with set.
intros. rewrite H2; rewrite Add_Equal in H1; auto with set.
Qed.
(** ** Alternative (weaker) specifications for [fold] *)
(** When [FSets] was first designed, the order in which Ocaml's [Set.fold]
takes the set elements was unspecified. This specification reflects
this fact:
*)
Lemma fold_0 :
forall s (A : Type) (i : A) (f : elt -> A -> A),
exists l : list elt,
NoDup l /\
(forall x : elt, In x s <-> InA x l) /\
fold f s i = fold_right f i l.
Proof.
intros; exists (rev (elements s)); split.
- apply NoDupA_rev.
+ auto with typeclass_instances.
+ auto with set.
- split; intros.
+ rewrite elements_iff; do 2 rewrite InA_alt.
split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
+ apply fold_spec_right.
Qed.
(** An alternate (and previous) specification for [fold] was based on
the recursive structure of a set. It is now lemmas [fold_1] and
[fold_2]. *)
Lemma fold_1 :
forall s (A : Type) (eqA : A -> A -> Prop)
(st : Equivalence eqA) (i : A) (f : elt -> A -> A),
Empty s -> eqA (fold f s i) i.
Proof.
unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))).
rewrite H3; clear H3.
generalize H H2; clear H H2; case l; simpl; intros.
- reflexivity.
- elim (H e).
elim (H2 e); intuition.
Qed.
Lemma fold_2 :
forall s s' x (A : Type) (eqA : A -> A -> Prop)
(st : Equivalence eqA) (i : A) (f : elt -> A -> A),
compat_op E.eq eqA f ->
transpose eqA f ->
~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
Proof.
intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
apply fold_right_add with (eqA:=E.eq)(eqB:=eqA). { auto with typeclass_instances. } 1-5: auto.
- rewrite <- Hl1; auto.
- intros a; rewrite InA_cons; rewrite <- Hl1; rewrite <- Hl'1;
rewrite (H2 a); intuition.
Qed.
(** In fact, [fold] on empty sets is more than equivalent to
the initial element, it is Leibniz-equal to it. *)
Lemma fold_1b :
forall s (A : Type)(i : A) (f : elt -> A -> A),
Empty s -> (fold f s i) = i.
Proof.
intros.
rewrite M.fold_1.
rewrite elements_Empty in H; rewrite H; simpl; auto.
Qed.
Section Fold_More.
Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
Lemma fold_commutes : forall i s x,
eqA (fold f s (f x i)) (f x (fold f s i)).
Proof.
intros.
apply fold_rel with (R:=fun u v => eqA u (f x v)); intros.
- reflexivity.
- transitivity (f x0 (f x b)); auto. apply Comp; auto.
Qed.
(** ** Fold is a morphism *)
Lemma fold_init : forall i i' s, eqA i i' ->
eqA (fold f s i) (fold f s i').
Proof.
intros. apply fold_rel with (R:=eqA); auto.
intros; apply Comp; auto.
Qed.
Lemma fold_equal :
forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
Proof.
intros i s; pattern s; apply set_induction; clear s; intros.
- transitivity i.
+ apply fold_1; auto.
+ symmetry; apply fold_1; auto.
rewrite <- H0; auto.
- transitivity (f x (fold f s i)).
+ apply fold_2 with (eqA := eqA); auto.
+ symmetry; apply fold_2 with (eqA := eqA); auto.
unfold Add in *; intros.
rewrite <- H2; auto.
Qed.
(** ** Fold and other set operators *)
Lemma fold_empty : forall i, fold f empty i = i.
Proof.
intros i; apply fold_1b; auto with set.
Qed.
Lemma fold_add : forall i s x, ~In x s ->
eqA (fold f (add x s) i) (f x (fold f s i)).
Proof.
intros; apply fold_2 with (eqA := eqA); auto with set.
Qed.
Lemma add_fold : forall i s x, In x s ->
eqA (fold f (add x s) i) (fold f s i).
Proof.
intros; apply fold_equal; auto with set.
Qed.
Lemma remove_fold_1: forall i s x, In x s ->
eqA (f x (fold f (remove x s) i)) (fold f s i).
Proof.
intros.
symmetry.
apply fold_2 with (eqA:=eqA); auto with set.
Qed.
Lemma remove_fold_2: forall i s x, ~In x s ->
eqA (fold f (remove x s) i) (fold f s i).
Proof.
intros.
apply fold_equal; auto with set.
Qed.
Lemma fold_union_inter : forall i s s',
eqA (fold f (union s s') (fold f (inter s s') i))
(fold f s (fold f s' i)).
Proof.
intros; pattern s; apply set_induction; clear s; intros.
- transitivity (fold f s' (fold f (inter s s') i)).
{ apply fold_equal; auto with set. }
transitivity (fold f s' i).
+ apply fold_init; auto.
apply fold_1; auto with set.
+ symmetry; apply fold_1; auto.
- rename s'0 into s''.
destruct (In_dec x s').
+ (* In x s' *)
transitivity (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
* apply fold_init; auto.
apply fold_2 with (eqA:=eqA); auto with set.
rewrite inter_iff; intuition.
* transitivity (f x (fold f s (fold f s' i))).
1:transitivity (fold f (union s s') (f x (fold f (inter s s') i))).
-- apply fold_equal; auto.
apply equal_sym; apply union_Equal with x; auto with set.
-- transitivity (f x (fold f (union s s') (fold f (inter s s') i))).
{ apply fold_commutes; auto. }
apply Comp; auto.
-- symmetry; apply fold_2 with (eqA:=eqA); auto.
+ (* ~(In x s') *)
transitivity (f x (fold f (union s s') (fold f (inter s'' s') i))).
{ apply fold_2 with (eqA:=eqA); auto with set. }
transitivity (f x (fold f (union s s') (fold f (inter s s') i))).
* apply Comp;auto.
apply fold_init;auto.
apply fold_equal;auto.
apply equal_sym; apply inter_Add_2 with x; auto with set.
* transitivity (f x (fold f s (fold f s' i))).
-- apply Comp; auto.
-- symmetry; apply fold_2 with (eqA:=eqA); auto.
Qed.
Lemma fold_diff_inter : forall i s s',
eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
Proof.
intros.
transitivity (fold f (union (diff s s') (inter s s'))
(fold f (inter (diff s s') (inter s s')) i)).
{ symmetry; apply fold_union_inter; auto. }
transitivity (fold f s (fold f (inter (diff s s') (inter s s')) i)).
{ apply fold_equal; auto with set. }
apply fold_init; auto.
apply fold_1; auto with set.
Qed.
Lemma fold_union: forall i s s',
(forall x, ~(In x s/\In x s')) ->
eqA (fold f (union s s') i) (fold f s (fold f s' i)).
Proof.
intros.
transitivity (fold f (union s s') (fold f (inter s s') i)).
{ apply fold_init; auto.
symmetry; apply fold_1; auto with set.
unfold Empty; intro a; generalize (H a); set_iff; tauto. }
apply fold_union_inter; auto.
Qed.
End Fold_More.
Lemma fold_plus :
forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
Proof.
intros. apply fold_rel with (R:=fun u v => u = v + p); simpl; auto.
Qed.
End Fold.
(** * Cardinal *)
(** ** Characterization of cardinal in terms of fold *)
Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.
Proof.
intros; rewrite cardinal_1; rewrite M.fold_1.
symmetry; apply fold_left_S_0; auto.
Qed.
(** ** Old specifications for [cardinal]. *)
Lemma cardinal_0 :
forall s, exists l : list elt,
NoDupA E.eq l /\
(forall x : elt, In x s <-> InA E.eq x l) /\
cardinal s = length l.
Proof.
intros; exists (elements s); intuition auto with set; apply cardinal_1.
Qed.
Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.
Proof.
intros; rewrite cardinal_fold; apply fold_1; auto with fset.
Qed.
Lemma cardinal_2 :
forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s).
Proof.
intros; do 2 rewrite cardinal_fold.
change S with ((fun _ => S) x).
apply fold_2; auto with fset.
Qed.
(** ** Cardinal and (non-)emptiness *)
Lemma cardinal_Empty : forall s, Empty s <-> cardinal s = 0.
Proof.
intros.
rewrite elements_Empty, M.cardinal_1.
destruct (elements s); intuition; discriminate.
Qed.
Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
Proof.
intros; rewrite cardinal_Empty; auto.
Qed.
#[global]
Hint Resolve cardinal_inv_1 : fset.
Lemma cardinal_inv_2 :
forall s n, cardinal s = S n -> { x : elt | In x s }.
Proof.
intros; rewrite M.cardinal_1 in H.
generalize (elements_2 (s:=s)).
destruct (elements s); try discriminate.
exists e; auto.
Qed.
Lemma cardinal_inv_2b :
forall s, cardinal s <> 0 -> { x : elt | In x s }.
Proof.
intro; generalize (@cardinal_inv_2 s); destruct cardinal;
[intuition|eauto].
Qed.
(** ** Cardinal is a morphism *)
Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
Proof.
symmetry.
remember (cardinal s) as n; symmetry in Heqn; revert s s' Heqn H.
induction n; intros.
- apply cardinal_1; rewrite <- H; auto with fset.
- destruct (cardinal_inv_2 Heqn) as (x,H2).
revert Heqn.
rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); eauto with set.
Qed.
Add Morphism cardinal with signature (Equal ==> Logic.eq) as cardinal_m.
Proof.
exact Equal_cardinal.
Qed.
#[global]
Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal : fset.
(** ** Cardinal and set operators *)
Lemma empty_cardinal : cardinal empty = 0.
Proof.
rewrite cardinal_fold; apply fold_1; auto with set fset.
Qed.
#[global]
Hint Immediate empty_cardinal cardinal_1 : set.
Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.
Proof.
intros.
rewrite (singleton_equal_add x).
replace 0 with (cardinal empty); auto with set.
apply cardinal_2 with x; auto with set.
Qed.
#[global]
Hint Resolve singleton_cardinal: set.
Lemma diff_inter_cardinal :
forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s .
Proof.
intros; do 3 rewrite cardinal_fold.
rewrite <- fold_plus.
apply fold_diff_inter with (eqA:=@Logic.eq nat); auto with fset.
Qed.
Lemma union_cardinal:
forall s s', (forall x, ~(In x s/\In x s')) ->
cardinal (union s s')=cardinal s+cardinal s'.
Proof.
intros; do 3 rewrite cardinal_fold.
rewrite <- fold_plus.
apply fold_union; auto with fset.
Qed.
Lemma subset_cardinal :
forall s s', s[<=]s' -> cardinal s <= cardinal s' .
Proof.
intros.
rewrite <- (diff_inter_cardinal s' s).
rewrite (inter_sym s' s).
rewrite (inter_subset_equal H).
apply Nat.le_add_l.
Qed.
Lemma subset_cardinal_lt :
forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
Proof.
intros.
rewrite <- (diff_inter_cardinal s' s).
rewrite (inter_sym s' s).
rewrite (inter_subset_equal H).
generalize (@cardinal_inv_1 (diff s' s)).
destruct (cardinal (diff s' s)).
- intro H2; destruct (H2 Logic.eq_refl x).
set_iff; auto.
- intros _.
change (0 + cardinal s < S n + cardinal s).
apply Nat.add_lt_le_mono; [ apply Nat.lt_0_succ | reflexivity ].
Qed.
Theorem union_inter_cardinal :
forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' .
Proof.
intros.
do 4 rewrite cardinal_fold.
do 2 rewrite <- fold_plus.
apply fold_union_inter with (eqA:=@Logic.eq nat); auto with fset.
Qed.
Lemma union_cardinal_inter :
forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
Proof.
intros.
rewrite <- union_inter_cardinal, Nat.add_sub.
reflexivity.
Qed.
Lemma union_cardinal_le :
forall s s', cardinal (union s s') <= cardinal s + cardinal s'.
Proof.
intros; generalize (union_inter_cardinal s s').
intros; rewrite <- H; auto with arith.
Qed.
Lemma add_cardinal_1 :
forall s x, In x s -> cardinal (add x s) = cardinal s.
Proof.
auto with set fset.
Qed.
Lemma add_cardinal_2 :
forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).
Proof.
intros.
do 2 rewrite cardinal_fold.
change S with ((fun _ => S) x);
apply fold_add with (eqA:=@Logic.eq nat); auto with fset.
Qed.
Lemma remove_cardinal_1 :
forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.
Proof.
intros.
do 2 rewrite cardinal_fold.
change S with ((fun _ =>S) x).
apply remove_fold_1 with (eqA:=@Logic.eq nat); auto with fset.
Qed.
Lemma remove_cardinal_2 :
forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
Proof.
auto with set fset.
Qed.
#[global]
Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2 : fset.
End WProperties_fun.
(** Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping [WS<=S], the [Properties] functor which is meant to be
used on modules [(M:S)] can simply be an alias of [WProperties]. *)
Module WProperties (M:WS) := WProperties_fun M.E M.
Module Properties := WProperties.
(** Now comes some properties specific to the element ordering,
invalid for Weak Sets. *)
Module OrdProperties (M:S).
Module ME:=OrderedTypeFacts(M.E).
Module Import P := Properties M.
Import FM.
Import M.E.
Import M.
(** First, a specialized version of SortA_equivlistA_eqlistA: *)
Lemma sort_equivlistA_eqlistA : forall l l' : list elt,
sort E.lt l -> sort E.lt l' -> equivlistA E.eq l l' -> eqlistA E.eq l l'.
Proof.
apply SortA_equivlistA_eqlistA; auto with typeclass_instances.
Qed.
Definition gtb x y := match E.compare x y with GT _ => true | _ => false end.
Definition leb x := fun y => negb (gtb x y).
Definition elements_lt x s := List.filter (gtb x) (elements s).
Definition elements_ge x s := List.filter (leb x) (elements s).
Lemma gtb_1 : forall x y, gtb x y = true <-> E.lt y x.
Proof.
intros; unfold gtb; destruct (E.compare x y); intuition; try discriminate; ME.order.
Qed.
Lemma leb_1 : forall x y, leb x y = true <-> ~E.lt y x.
Proof.
intros; unfold leb, gtb; destruct (E.compare x y); intuition try discriminate; ME.order.
Qed.
Lemma gtb_compat : forall x, Proper (E.eq==>Logic.eq) (gtb x).
Proof.
red; intros x a b H.
generalize (gtb_1 x a)(gtb_1 x b); destruct (gtb x a); destruct (gtb x b); auto.
- intros.
symmetry; rewrite H1.
apply ME.eq_lt with a; auto with ordered_type.
rewrite <- H0; auto.
- intros.
rewrite H0.
apply ME.eq_lt with b; auto.
rewrite <- H1; auto.
Qed.
Lemma leb_compat : forall x, Proper (E.eq==>Logic.eq) (leb x).
Proof.
red; intros x a b H; unfold leb.
f_equal; apply gtb_compat; auto.
Qed.
#[global]
Hint Resolve gtb_compat leb_compat : fset.
Lemma elements_split : forall x s,
elements s = elements_lt x s ++ elements_ge x s.
Proof.
unfold elements_lt, elements_ge, leb; intros.
eapply (@filter_split _ E.eq _ E.lt). 1-2: auto with typeclass_instances. 2: auto with set.
intros.
rewrite gtb_1 in H.
assert (~E.lt y x). {
unfold gtb in *; destruct (E.compare x y); intuition try discriminate; ME.order.
}
ME.order.
Qed.
Lemma elements_Add : forall s s' x, ~In x s -> Add x s s' ->
eqlistA E.eq (elements s') (elements_lt x s ++ x :: elements_ge x s).
Proof.
intros; unfold elements_ge, elements_lt.
apply sort_equivlistA_eqlistA; auto with set.
- apply (@SortA_app _ E.eq). { auto with typeclass_instances. }
+ apply (@filter_sort _ E.eq). 1-3: auto with typeclass_instances. auto with set.
+ constructor; auto.
* apply (@filter_sort _ E.eq). 1-3: auto with typeclass_instances. auto with set.
* rewrite ME.Inf_alt by (apply (@filter_sort _ E.eq); auto with set typeclass_instances).
intros.
rewrite filter_InA in H1 by auto with fset. destruct H1.
rewrite leb_1 in H2.
rewrite <- elements_iff in H1.
assert (~E.eq x y). {
contradict H; rewrite H; auto.
}
ME.order.
+ intros.
rewrite filter_InA in H1 by auto with fset. destruct H1.
rewrite gtb_1 in H3.
inversion_clear H2.
* ME.order.
* rewrite filter_InA in H4 by auto with fset. destruct H4.
rewrite leb_1 in H4.
ME.order.
- red; intros a.
rewrite InA_app_iff, InA_cons, !filter_InA, <-elements_iff,
leb_1, gtb_1, (H0 a) by auto with fset.
intuition auto with relations set.
destruct (E.compare a x); intuition auto with set.
fold (~E.lt a x); auto with ordered_type set.
Qed.
Definition Above x s := forall y, In y s -> E.lt y x.
Definition Below x s := forall y, In y s -> E.lt x y.
Lemma elements_Add_Above : forall s s' x,
Above x s -> Add x s s' ->
eqlistA E.eq (elements s') (elements s ++ x::nil).
Proof.
intros.
apply sort_equivlistA_eqlistA. { auto with set. }
- apply (@SortA_app _ E.eq).
+ auto with typeclass_instances.
+ auto with set.
+ auto.
+ intros.
inversion_clear H2.
* rewrite <- elements_iff in H1.
apply ME.lt_eq with x; auto with ordered_type.
* inversion H3.
- red; intros a.
rewrite InA_app_iff, InA_cons, InA_nil.
do 2 rewrite <- elements_iff; rewrite (H0 a); intuition auto with relations.
Qed.
Lemma elements_Add_Below : forall s s' x,
Below x s -> Add x s s' ->
eqlistA E.eq (elements s') (x::elements s).
Proof.
intros.
apply sort_equivlistA_eqlistA.
- auto with set.
- change (sort E.lt ((x::nil) ++ elements s)).
apply (@SortA_app _ E.eq).
+ auto with typeclass_instances.
+ auto.
+ auto with set.
+ intros.
inversion_clear H1.
* rewrite <- elements_iff in H2.
apply ME.eq_lt with x; auto.
* inversion H3.
- red; intros a.
rewrite InA_cons.
do 2 rewrite <- elements_iff; rewrite (H0 a); intuition auto with relations.
Qed.
(** Two other induction principles on sets: we can be more restrictive
on the element we add at each step. *)
Lemma set_induction_max :
forall P : t -> Type,
(forall s : t, Empty s -> P s) ->
(forall s s', P s -> forall x, Above x s -> Add x s s' -> P s') ->
forall s : t, P s.
Proof.
intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto with fset.
case_eq (max_elt s); intros.
- apply X0 with (remove e s) e; auto with set.
+ apply IHn.
assert (S n = S (cardinal (remove e s))).
{ rewrite Heqn; apply cardinal_2 with e; auto with set ordered_type. }
inversion H0; auto.
+ red; intros.
rewrite remove_iff in H0; destruct H0.
generalize (@max_elt_2 s e y H H0); ME.order.
- assert (H0:=max_elt_3 H).
rewrite cardinal_Empty in H0; rewrite H0 in Heqn; inversion Heqn.
Qed.
Lemma set_induction_min :
forall P : t -> Type,
(forall s : t, Empty s -> P s) ->
(forall s s', P s -> forall x, Below x s -> Add x s s' -> P s') ->
forall s : t, P s.
Proof.
intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto with fset.
case_eq (min_elt s); intros.
- apply X0 with (remove e s) e; auto with set.
+ apply IHn.
assert (S n = S (cardinal (remove e s))).
{ rewrite Heqn; apply cardinal_2 with e; auto with set ordered_type. }
inversion H0; auto.
+ red; intros.
rewrite remove_iff in H0; destruct H0.
generalize (@min_elt_2 s e y H H0); ME.order.
- assert (H0:=min_elt_3 H).
rewrite cardinal_Empty in H0; auto; rewrite H0 in Heqn; inversion Heqn.
Qed.
(** More properties of [fold] : behavior with respect to Above/Below *)
Lemma fold_3 :
forall s s' x (A : Type) (eqA : A -> A -> Prop)
(st : Equivalence eqA) (i : A) (f : elt -> A -> A),
compat_op E.eq eqA f ->
Above x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
Proof.
intros.
rewrite 2 fold_spec_right.
change (f x (fold_right f i (rev (elements s)))) with
(fold_right f i (rev (x::nil)++rev (elements s))).
apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
rewrite <- distr_rev.
apply eqlistA_rev.
apply elements_Add_Above; auto.
Qed.
Lemma fold_4 :
forall s s' x (A : Type) (eqA : A -> A -> Prop)
(st : Equivalence eqA) (i : A) (f : elt -> A -> A),
compat_op E.eq eqA f ->
Below x s -> Add x s s' -> eqA (fold f s' i) (fold f s (f x i)).
Proof.
intros.
rewrite 2 M.fold_1.
set (g:=fun (a : A) (e : elt) => f e a).
change (eqA (fold_left g (elements s') i) (fold_left g (x::elements s) i)).
unfold g.
rewrite <- 2 fold_left_rev_right.
apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
apply eqlistA_rev.
apply elements_Add_Below; auto.
Qed.
(** The following results have already been proved earlier,
but we can now prove them with one hypothesis less:
no need for [(transpose eqA f)]. *)
Section FoldOpt.
Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f).
Lemma fold_equal :
forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
Proof.
intros. rewrite 2 fold_spec_right.
apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
apply eqlistA_rev.
apply sort_equivlistA_eqlistA; auto with set.
red; intro a; do 2 rewrite <- elements_iff; auto.
Qed.
Lemma add_fold : forall i s x, In x s ->
eqA (fold f (add x s) i) (fold f s i).
Proof.
intros; apply fold_equal; auto with set.
Qed.
Lemma remove_fold_2: forall i s x, ~In x s ->
eqA (fold f (remove x s) i) (fold f s i).
Proof.
intros.
apply fold_equal; auto with set.
Qed.
End FoldOpt.
(** An alternative version of [choose_3] *)
Lemma choose_equal : forall s s', Equal s s' ->
match choose s, choose s' with
| Some x, Some x' => E.eq x x'
| None, None => True
| _, _ => False
end.
Proof.
intros s s' H;
generalize (@choose_1 s)(@choose_2 s)
(@choose_1 s')(@choose_2 s')(@choose_3 s s');
destruct (choose s); destruct (choose s'); simpl; intuition.
- apply H5 with e; rewrite <-H; auto.
- apply H5 with e; rewrite H; auto.
Qed.
End OrdProperties.
|