1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * MSetGenTree : sets via generic trees
This module factorizes common parts in implementations
of finite sets as AVL trees and as Red-Black trees. The nodes
of the trees defined here include an generic information
parameter, that will be the height in AVL trees and the color
in Red-Black trees. Without more details here about these
information parameters, trees here are not known to be
well-balanced, but simply binary-search-trees.
The operations we could define and prove correct here are the
one that do not build non-empty trees, but only analyze them :
- empty is_empty
- mem
- compare equal subset
- fold cardinal elements
- for_all exists_
- min_elt max_elt choose
*)
From Stdlib Require Import Orders OrdersFacts MSetInterface PeanoNat.
From Stdlib Require Arith. (* contains deprecated dependencies *)
Local Open Scope list_scope.
Local Open Scope lazy_bool_scope.
(* For nicer extraction, we create induction principles
only when needed *)
Local Unset Elimination Schemes.
Module Type InfoTyp.
Parameter t : Set.
End InfoTyp.
(** * Ops : the pure functions *)
Module Type Ops (X:OrderedType)(Info:InfoTyp).
Definition elt := X.t.
#[global]
Hint Transparent elt : core.
Inductive tree : Type :=
| Leaf : tree
| Node : Info.t -> tree -> X.t -> tree -> tree.
(** ** The empty set and emptyness test *)
Definition empty := Leaf.
Definition is_empty t :=
match t with
| Leaf => true
| _ => false
end.
(** ** Membership test *)
(** The [mem] function is deciding membership. It exploits the
binary search tree invariant to achieve logarithmic complexity. *)
Fixpoint mem x t :=
match t with
| Leaf => false
| Node _ l k r =>
match X.compare x k with
| Lt => mem x l
| Eq => true
| Gt => mem x r
end
end.
(** ** Minimal, maximal, arbitrary elements *)
Fixpoint min_elt (t : tree) : option elt :=
match t with
| Leaf => None
| Node _ Leaf x r => Some x
| Node _ l x r => min_elt l
end.
Fixpoint max_elt (t : tree) : option elt :=
match t with
| Leaf => None
| Node _ l x Leaf => Some x
| Node _ l x r => max_elt r
end.
Definition choose := min_elt.
(** ** Iteration on elements *)
Fixpoint fold {A: Type} (f: elt -> A -> A) (t: tree) (base: A) : A :=
match t with
| Leaf => base
| Node _ l x r => fold f r (f x (fold f l base))
end.
Fixpoint elements_aux acc s :=
match s with
| Leaf => acc
| Node _ l x r => elements_aux (x :: elements_aux acc r) l
end.
Definition elements := elements_aux nil.
Fixpoint rev_elements_aux acc s :=
match s with
| Leaf => acc
| Node _ l x r => rev_elements_aux (x :: rev_elements_aux acc l) r
end.
Definition rev_elements := rev_elements_aux nil.
Fixpoint cardinal (s : tree) : nat :=
match s with
| Leaf => 0
| Node _ l _ r => S (cardinal l + cardinal r)
end.
Fixpoint maxdepth s :=
match s with
| Leaf => 0
| Node _ l _ r => S (max (maxdepth l) (maxdepth r))
end.
Fixpoint mindepth s :=
match s with
| Leaf => 0
| Node _ l _ r => S (min (mindepth l) (mindepth r))
end.
(** ** Testing universal or existential properties. *)
(** We do not use the standard boolean operators of Coq,
but lazy ones. *)
Fixpoint for_all (f:elt->bool) s := match s with
| Leaf => true
| Node _ l x r => f x &&& for_all f l &&& for_all f r
end.
Fixpoint exists_ (f:elt->bool) s := match s with
| Leaf => false
| Node _ l x r => f x ||| exists_ f l ||| exists_ f r
end.
(** ** Comparison of trees *)
(** The algorithm here has been suggested by Xavier Leroy,
and transformed into c.p.s. by Benjamin Grégoire.
The original ocaml code (with non-structural recursive calls)
has also been formalized (thanks to Function+measure), see
[ocaml_compare] in [MSetFullAVL]. The following code with
continuations computes dramatically faster in Coq, and
should be almost as efficient after extraction.
*)
(** Enumeration of the elements of a tree. This corresponds
to the "samefringe" notion in the literature. *)
Inductive enumeration :=
| End : enumeration
| More : elt -> tree -> enumeration -> enumeration.
(** [cons t e] adds the elements of tree [t] on the head of
enumeration [e]. *)
Fixpoint cons s e : enumeration :=
match s with
| Leaf => e
| Node _ l x r => cons l (More x r e)
end.
(** One step of comparison of elements *)
Definition compare_more x1 (cont:enumeration->comparison) e2 :=
match e2 with
| End => Gt
| More x2 r2 e2 =>
match X.compare x1 x2 with
| Eq => cont (cons r2 e2)
| Lt => Lt
| Gt => Gt
end
end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint compare_cont s1 (cont:enumeration->comparison) e2 :=
match s1 with
| Leaf => cont e2
| Node _ l1 x1 r1 =>
compare_cont l1 (compare_more x1 (compare_cont r1 cont)) e2
end.
(** Initial continuation *)
Definition compare_end e2 :=
match e2 with End => Eq | _ => Lt end.
(** The complete comparison *)
Definition compare s1 s2 := compare_cont s1 compare_end (cons s2 End).
Definition equal s1 s2 :=
match compare s1 s2 with Eq => true | _ => false end.
(** ** Subset test *)
(** In ocaml, recursive calls are made on "half-trees" such as
(Node _ l1 x1 Leaf) and (Node _ Leaf x1 r1). Instead of these
non-structural calls, we propose here two specialized functions
for these situations. This version should be almost as efficient
as the one of ocaml (closures as arguments may slow things a bit),
it is simply less compact. The exact ocaml version has also been
formalized (thanks to Function+measure), see [ocaml_subset] in
[MSetFullAVL].
*)
Fixpoint subsetl (subset_l1 : tree -> bool) x1 s2 : bool :=
match s2 with
| Leaf => false
| Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset_l1 l2
| Lt => subsetl subset_l1 x1 l2
| Gt => mem x1 r2 &&& subset_l1 s2
end
end.
Fixpoint subsetr (subset_r1 : tree -> bool) x1 s2 : bool :=
match s2 with
| Leaf => false
| Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset_r1 r2
| Lt => mem x1 l2 &&& subset_r1 s2
| Gt => subsetr subset_r1 x1 r2
end
end.
Fixpoint subset s1 s2 : bool := match s1, s2 with
| Leaf, _ => true
| Node _ _ _ _, Leaf => false
| Node _ l1 x1 r1, Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset l1 l2 &&& subset r1 r2
| Lt => subsetl (subset l1) x1 l2 &&& subset r1 s2
| Gt => subsetr (subset r1) x1 r2 &&& subset l1 s2
end
end.
End Ops.
(** * Props : correctness proofs of these generic operations *)
Module Type Props (X:OrderedType)(Info:InfoTyp)(Import M:Ops X Info).
(** ** Occurrence in a tree *)
Inductive InT (x : elt) : tree -> Prop :=
| IsRoot : forall c l r y, X.eq x y -> InT x (Node c l y r)
| InLeft : forall c l r y, InT x l -> InT x (Node c l y r)
| InRight : forall c l r y, InT x r -> InT x (Node c l y r).
Definition In := InT.
(** ** Some shortcuts *)
Definition Equal s s' := forall a : elt, InT a s <-> InT a s'.
Definition Subset s s' := forall a : elt, InT a s -> InT a s'.
Definition Empty s := forall a : elt, ~ InT a s.
Definition For_all (P : elt -> Prop) s := forall x, InT x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, InT x s /\ P x.
(** ** Binary search trees *)
(** [lt_tree x s]: all elements in [s] are smaller than [x]
(resp. greater for [gt_tree]) *)
Definition lt_tree x s := forall y, InT y s -> X.lt y x.
Definition gt_tree x s := forall y, InT y s -> X.lt x y.
(** [bst t] : [t] is a binary search tree *)
Inductive bst : tree -> Prop :=
| BSLeaf : bst Leaf
| BSNode : forall c x l r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (Node c l x r).
(** [bst] is the (decidable) invariant our trees will have to satisfy. *)
Definition IsOk := bst.
Class Ok (s:tree) : Prop := ok : bst s.
#[global]
Instance bst_Ok s (Hs : bst s) : Ok s := { ok := Hs }.
Fixpoint ltb_tree x s :=
match s with
| Leaf => true
| Node _ l y r =>
match X.compare x y with
| Gt => ltb_tree x l && ltb_tree x r
| _ => false
end
end.
Fixpoint gtb_tree x s :=
match s with
| Leaf => true
| Node _ l y r =>
match X.compare x y with
| Lt => gtb_tree x l && gtb_tree x r
| _ => false
end
end.
Fixpoint isok s :=
match s with
| Leaf => true
| Node _ l x r => isok l && isok r && ltb_tree x l && gtb_tree x r
end.
(** ** Known facts about ordered types *)
Module Import MX := OrderedTypeFacts X.
(** ** Automation and dedicated tactics *)
Scheme tree_ind := Induction for tree Sort Prop.
Scheme bst_ind := Induction for bst Sort Prop.
Local Hint Resolve MX.eq_refl MX.eq_trans MX.lt_trans ok : core.
Local Hint Immediate MX.eq_sym : core.
Local Hint Unfold In lt_tree gt_tree : core.
Local Hint Constructors InT bst : core.
Local Hint Unfold Ok : core.
(** Automatic treatment of [Ok] hypothesis *)
Ltac clear_inversion H := inversion H; clear H; subst.
Ltac inv_ok := match goal with
| H:Ok (Node _ _ _ _) |- _ => clear_inversion H; inv_ok
| H:Ok Leaf |- _ => clear H; inv_ok
| H:bst ?x |- _ => change (Ok x) in H; inv_ok
| _ => idtac
end.
(** A tactic to repeat [inversion_clear] on all hyps of the
form [(f (Node _ _ _ _))] *)
Ltac is_tree_constr c :=
match c with
| Leaf => idtac
| Node _ _ _ _ => idtac
| _ => fail
end.
Ltac invtree f :=
match goal with
| H:f ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| H:f _ ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| H:f _ _ ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| _ => idtac
end.
Ltac inv := inv_ok; invtree InT.
Ltac intuition_in := repeat (intuition auto; inv).
(** Helper tactic concerning order of elements. *)
Ltac order := match goal with
| U: lt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
| U: gt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
| _ => MX.order
end.
(** [isok] is indeed a decision procedure for [Ok] *)
Lemma ltb_tree_iff : forall x s, lt_tree x s <-> ltb_tree x s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
- unfold lt_tree; intuition_in.
- elim_compare x y.
+ split; intros; try discriminate. assert (X.lt y x) by auto. order.
+ split; intros; try discriminate. assert (X.lt y x) by auto. order.
+ rewrite !andb_true_iff, <-IHl, <-IHr.
unfold lt_tree; intuition_in; order.
Qed.
Lemma gtb_tree_iff : forall x s, gt_tree x s <-> gtb_tree x s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
- unfold gt_tree; intuition_in.
- elim_compare x y.
+ split; intros; try discriminate. assert (X.lt x y) by auto. order.
+ rewrite !andb_true_iff, <-IHl, <-IHr.
unfold gt_tree; intuition_in; order.
+ split; intros; try discriminate. assert (X.lt x y) by auto. order.
Qed.
Lemma isok_iff : forall s, Ok s <-> isok s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
- intuition_in.
- rewrite !andb_true_iff, <- IHl, <-IHr, <- ltb_tree_iff, <- gtb_tree_iff.
intuition_in.
Qed.
#[global]
Instance isok_Ok s : isok s = true -> Ok s | 10.
Proof. intros; apply <- isok_iff; auto. Qed.
(** ** Basic results about [In] *)
Lemma In_1 :
forall s x y, X.eq x y -> InT x s -> InT y s.
Proof.
induction s; simpl; intuition_in; eauto.
Qed.
Local Hint Immediate In_1 : core.
#[global]
Instance In_compat : Proper (X.eq==>eq==>iff) InT.
Proof.
apply proper_sym_impl_iff_2; auto with *.
repeat red; intros; subst. apply In_1 with x; auto.
Qed.
Lemma In_node_iff :
forall c l x r y,
InT y (Node c l x r) <-> InT y l \/ X.eq y x \/ InT y r.
Proof.
intuition_in.
Qed.
Lemma In_leaf_iff : forall x, InT x Leaf <-> False.
Proof.
intuition_in.
Qed.
(** Results about [lt_tree] and [gt_tree] *)
Lemma lt_leaf : forall x : elt, lt_tree x Leaf.
Proof.
red; inversion 1.
Qed.
Lemma gt_leaf : forall x : elt, gt_tree x Leaf.
Proof.
red; inversion 1.
Qed.
Lemma lt_tree_node :
forall (x y : elt) (l r : tree) (i : Info.t),
lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node i l y r).
Proof.
unfold lt_tree; intuition_in; order.
Qed.
Lemma gt_tree_node :
forall (x y : elt) (l r : tree) (i : Info.t),
gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node i l y r).
Proof.
unfold gt_tree; intuition_in; order.
Qed.
Local Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node : core.
Lemma lt_tree_not_in :
forall (x : elt) (t : tree), lt_tree x t -> ~ InT x t.
Proof.
intros; intro; order.
Qed.
Lemma lt_tree_trans :
forall x y, X.lt x y -> forall t, lt_tree x t -> lt_tree y t.
Proof.
eauto.
Qed.
Lemma gt_tree_not_in :
forall (x : elt) (t : tree), gt_tree x t -> ~ InT x t.
Proof.
intros; intro; order.
Qed.
Lemma gt_tree_trans :
forall x y, X.lt y x -> forall t, gt_tree x t -> gt_tree y t.
Proof.
eauto.
Qed.
#[global]
Instance lt_tree_compat : Proper (X.eq ==> Logic.eq ==> iff) lt_tree.
Proof.
apply proper_sym_impl_iff_2; auto.
intros x x' Hx s s' Hs H y Hy. subst. setoid_rewrite <- Hx; auto.
Qed.
#[global]
Instance gt_tree_compat : Proper (X.eq ==> Logic.eq ==> iff) gt_tree.
Proof.
apply proper_sym_impl_iff_2; auto.
intros x x' Hx s s' Hs H y Hy. subst. setoid_rewrite <- Hx; auto.
Qed.
Local Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans : core.
Ltac induct s x :=
induction s as [|i l IHl x' r IHr]; simpl; intros;
[|elim_compare x x'; intros; inv].
Ltac auto_tc := auto with typeclass_instances.
Ltac ok :=
inv; change bst with Ok in *;
match goal with
| |- Ok (Node _ _ _ _) => constructor; auto_tc; ok
| |- lt_tree _ (Node _ _ _ _) => apply lt_tree_node; ok
| |- gt_tree _ (Node _ _ _ _) => apply gt_tree_node; ok
| _ => eauto with typeclass_instances
end.
(** ** Empty set *)
Lemma empty_spec : Empty empty.
Proof.
intros x H. inversion H.
Qed.
#[global]
Instance empty_ok : Ok empty.
Proof.
auto.
Qed.
(** ** Emptyness test *)
Lemma is_empty_spec : forall s, is_empty s = true <-> Empty s.
Proof.
destruct s as [|c r x l]; simpl; auto.
- split; auto. intros _ x H. inv.
- split; auto.
+ try discriminate.
+ intro H; elim (H x); auto.
Qed.
(** ** Membership *)
Lemma mem_spec : forall s x `{Ok s}, mem x s = true <-> InT x s.
Proof.
split.
- induct s x; now auto.
- induct s x; intuition_in; order.
Qed.
(** ** Minimal and maximal elements *)
Lemma min_elt_spec1 s x : min_elt s = Some x -> InT x s.
Proof.
induction s as [|t1 [|] IHs1 y s2 IHs2]; simpl; auto; inversion 1; auto.
Qed.
Lemma min_elt_spec2 s x y `{Ok s} :
min_elt s = Some x -> InT y s -> ~ X.lt y x.
Proof.
revert x y; induction H as [|? z l r Hl IHl Hr IHr Hlt Hgt]; simpl in *; [discriminate|].
intros x y He Hi; apply In_node_iff in Hi.
destruct l as [|t l1 w l2].
+ intros; replace z with x in * by congruence.
destruct Hi as [Hi|[Hi|Hi]]; try order.
apply In_leaf_iff in Hi; contradiction.
+ destruct Hi as [Hi|[Hi|Hi]].
- apply IHl; assumption.
- intros H; eapply lt_tree_trans in Hlt; [|rewrite <- Hi; eassumption].
apply min_elt_spec1 in He; apply lt_tree_not_in in Hlt; contradiction.
- intros H.
apply min_elt_spec1, Hlt in He.
elim (gt_tree_not_in y r); [|assumption].
eapply gt_tree_trans; [|exact Hgt]; order.
Qed.
Lemma min_elt_spec3 s : min_elt s = None -> Empty s.
Proof.
induction s as [|t1 s1 IHs1 x s2 IHs2]; simpl in *; intros H.
+ inversion 1.
+ destruct s1 as [|? ? y]; [congruence|].
destruct (IHs1 H y); auto.
Qed.
Lemma max_elt_spec1 s x : max_elt s = Some x -> InT x s.
Proof.
induction s as [|t1 s1 IHs1 y [|] IHs2]; simpl in *; intros H; [congruence| |auto].
replace y with x by congruence; auto.
Qed.
Lemma max_elt_spec2 s x y `{Ok s} :
max_elt s = Some x -> InT y s -> ~ X.lt x y.
Proof.
revert x y; induction H as [|? z l r Hl IHl Hr IHr Hlt Hgt]; simpl in *; [discriminate|].
intros x y He Hi; apply In_node_iff in Hi.
destruct r as [|t l1 w l2].
+ intros; replace z with x in * by congruence.
destruct Hi as [Hi|[Hi|Hi]]; try order.
apply In_leaf_iff in Hi; contradiction.
+ destruct Hi as [Hi|[Hi|Hi]].
- intros H.
apply max_elt_spec1, Hgt in He.
elim (lt_tree_not_in y l); [|assumption].
eapply lt_tree_trans; [|exact Hlt]; order.
- intros H; eapply gt_tree_trans in Hgt; [|rewrite <- Hi; eassumption].
apply max_elt_spec1 in He; apply gt_tree_not_in in Hgt; contradiction.
- apply IHr; assumption.
Qed.
Lemma max_elt_spec3 s : max_elt s = None -> Empty s.
Proof.
induction s as [|t1 s1 IHs1 x s2 IHs2]; simpl in *; intros H.
+ inversion 1.
+ destruct s2 as [|? ? y]; [congruence|].
destruct (IHs2 H y); auto.
Qed.
Lemma choose_spec1 : forall s x, choose s = Some x -> InT x s.
Proof.
exact min_elt_spec1.
Qed.
Lemma choose_spec2 : forall s, choose s = None -> Empty s.
Proof.
exact min_elt_spec3.
Qed.
Lemma choose_spec3 : forall s s' x x' `{Ok s, Ok s'},
choose s = Some x -> choose s' = Some x' ->
Equal s s' -> X.eq x x'.
Proof.
unfold choose, Equal; intros s s' x x' Hb Hb' Hx Hx' H.
assert (~X.lt x x'). {
apply min_elt_spec2 with s'; auto.
rewrite <-H; auto using min_elt_spec1.
}
assert (~X.lt x' x). {
apply min_elt_spec2 with s; auto.
rewrite H; auto using min_elt_spec1.
}
elim_compare x x'; intuition.
Qed.
(** ** Elements *)
Lemma elements_spec1' : forall s acc x,
InA X.eq x (elements_aux acc s) <-> InT x s \/ InA X.eq x acc.
Proof.
induction s as [ | c l Hl x r Hr ]; simpl; auto.
- intuition.
inversion H0.
- intros.
rewrite Hl.
destruct (Hr acc x0); clear Hl Hr.
intuition; inversion_clear H3; intuition.
Qed.
Lemma elements_spec1 : forall s x, InA X.eq x (elements s) <-> InT x s.
Proof.
intros; generalize (elements_spec1' s nil x); intuition.
inversion_clear H0.
Qed.
Lemma elements_spec2' : forall s acc `{Ok s}, sort X.lt acc ->
(forall x y : elt, InA X.eq x acc -> InT y s -> X.lt y x) ->
sort X.lt (elements_aux acc s).
Proof.
induction s as [ | c l Hl y r Hr]; simpl; intuition.
inv.
apply Hl; auto.
- constructor.
+ apply Hr; auto.
+ eapply InA_InfA; eauto with *.
intros.
destruct (elements_spec1' r acc y0); intuition.
- intros.
inversion_clear H.
+ order.
+ destruct (elements_spec1' r acc x); intuition eauto.
Qed.
Lemma elements_spec2 : forall s `(Ok s), sort X.lt (elements s).
Proof.
intros; unfold elements; apply elements_spec2'; auto.
intros; inversion H0.
Qed.
Local Hint Resolve elements_spec2 : core.
Lemma elements_spec2w : forall s `(Ok s), NoDupA X.eq (elements s).
Proof.
intros. eapply SortA_NoDupA; eauto with *.
Qed.
Lemma elements_aux_cardinal :
forall s acc, (length acc + cardinal s)%nat = length (elements_aux acc s).
Proof.
simple induction s; simpl; intuition.
rewrite <- H.
simpl.
rewrite <- H0. rewrite (Nat.add_comm (cardinal t0)).
now rewrite <- Nat.add_succ_r, Nat.add_assoc.
Qed.
Lemma elements_cardinal : forall s : tree, cardinal s = length (elements s).
Proof.
exact (fun s => elements_aux_cardinal s nil).
Qed.
Definition cardinal_spec (s:tree)(Hs:Ok s) := elements_cardinal s.
Lemma elements_app :
forall s acc, elements_aux acc s = elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold elements; simpl.
rewrite 2 IHs1, IHs2, !app_nil_r, <- !app_assoc; auto.
Qed.
Lemma elements_node c l x r :
elements (Node c l x r) = elements l ++ x :: elements r.
Proof.
unfold elements; simpl.
now rewrite !elements_app, !app_nil_r.
Qed.
Lemma rev_elements_app :
forall s acc, rev_elements_aux acc s = rev_elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold rev_elements; simpl.
rewrite IHs1, 2 IHs2, !app_nil_r, <- !app_assoc; auto.
Qed.
Lemma rev_elements_node c l x r :
rev_elements (Node c l x r) = rev_elements r ++ x :: rev_elements l.
Proof.
unfold rev_elements; simpl.
now rewrite !rev_elements_app, !app_nil_r.
Qed.
Lemma rev_elements_rev s : rev_elements s = rev (elements s).
Proof.
induction s as [|c l IHl x r IHr]; trivial.
rewrite elements_node, rev_elements_node, IHl, IHr, rev_app_distr.
simpl. now rewrite <- !app_assoc.
Qed.
(** The converse of [elements_spec2], used in MSetRBT *)
(* TODO: TO MIGRATE ELSEWHERE... *)
Lemma sorted_app_inv l1 l2 :
sort X.lt (l1++l2) ->
sort X.lt l1 /\ sort X.lt l2 /\
forall x1 x2, InA X.eq x1 l1 -> InA X.eq x2 l2 -> X.lt x1 x2.
Proof.
induction l1 as [|a1 l1 IHl1].
- simpl; repeat split; auto.
intros. now rewrite InA_nil in *.
- simpl. inversion_clear 1 as [ | ? ? Hs Hhd ].
destruct (IHl1 Hs) as (H1 & H2 & H3).
repeat split.
* constructor; auto.
destruct l1; simpl in *; auto; inversion_clear Hhd; auto.
* trivial.
* intros x1 x2 Hx1 Hx2. rewrite InA_cons in Hx1. destruct Hx1.
+ rewrite H.
apply SortA_InfA_InA with (eqA:=X.eq)(l:=l1++l2); auto_tc.
rewrite InA_app_iff; auto_tc.
+ auto.
Qed.
Lemma elements_sort_ok s : sort X.lt (elements s) -> Ok s.
Proof.
induction s as [|c l IHl x r IHr].
- auto.
- rewrite elements_node.
intros H. destruct (sorted_app_inv _ _ H) as (H1 & H2 & H3).
inversion_clear H2.
constructor; ok.
* intros y Hy. apply H3.
+ now rewrite elements_spec1.
+ rewrite InA_cons. now left.
* intros y Hy.
apply SortA_InfA_InA with (eqA:=X.eq)(l:=elements r); auto_tc.
now rewrite elements_spec1.
Qed.
(** ** [for_all] and [exists] *)
Lemma for_all_spec s f : Proper (X.eq==>eq) f ->
(for_all f s = true <-> For_all (fun x => f x = true) s).
Proof.
intros Hf; unfold For_all.
induction s as [|i l IHl x r IHr]; simpl; auto.
- split; intros; inv; auto.
- rewrite <- !andb_lazy_alt, !andb_true_iff, IHl, IHr. clear IHl IHr.
intuition_in. eauto.
Qed.
Lemma exists_spec s f : Proper (X.eq==>eq) f ->
(exists_ f s = true <-> Exists (fun x => f x = true) s).
Proof.
intros Hf; unfold Exists.
induction s as [|i l IHl x r IHr]; simpl; auto.
- split.
* discriminate.
* intros (y,(H,_)); inv.
- rewrite <- !orb_lazy_alt, !orb_true_iff, IHl, IHr. clear IHl IHr.
split; [intros [[H|(y,(H,H'))]|(y,(H,H'))]|intros (y,(H,H'))].
* exists x; auto.
* exists y; auto.
* exists y; auto.
* inv; [left;left|left;right|right]; try (exists y); eauto.
Qed.
(** ** Fold *)
Lemma fold_spec' {A} (f : elt -> A -> A) (s : tree) (i : A) (acc : list elt) :
fold_left (flip f) (elements_aux acc s) i = fold_left (flip f) acc (fold f s i).
Proof.
revert i acc.
induction s as [|c l IHl x r IHr]; simpl; intros; auto.
rewrite IHl.
simpl. unfold flip at 2.
apply IHr.
Qed.
Lemma fold_spec (s:tree) {A} (i : A) (f : elt -> A -> A) :
fold f s i = fold_left (flip f) (elements s) i.
Proof.
revert i. unfold elements.
induction s as [|c l IHl x r IHr]; simpl; intros; auto.
rewrite fold_spec'.
rewrite IHr.
simpl; auto.
Qed.
(** ** Subset *)
Lemma subsetl_spec : forall subset_l1 l1 x1 c1 s2
`{Ok (Node c1 l1 x1 Leaf), Ok s2},
(forall s `{Ok s}, (subset_l1 s = true <-> Subset l1 s)) ->
(subsetl subset_l1 x1 s2 = true <-> Subset (Node c1 l1 x1 Leaf) s2 ).
Proof.
induction s2 as [|c2 l2 IHl2 x2 r2 IHr2]; simpl; intros.
- unfold Subset; intuition; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
- specialize (IHl2 H).
specialize (IHr2 H).
inv.
elim_compare x1 x2.
+ rewrite H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
* assert (X.eq a x2) by order; intuition_in.
* assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
+ rewrite IHl2 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
* assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
* assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
+ rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
* constructor 3. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
* rewrite mem_spec; auto.
assert (InT x1 (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
Lemma subsetr_spec : forall subset_r1 r1 x1 c1 s2,
bst (Node c1 Leaf x1 r1) -> bst s2 ->
(forall s, bst s -> (subset_r1 s = true <-> Subset r1 s)) ->
(subsetr subset_r1 x1 s2 = true <-> Subset (Node c1 Leaf x1 r1) s2).
Proof.
induction s2 as [|c2 l2 IHl2 x2 r2 IHr2]; simpl; intros.
- unfold Subset; intuition; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
- specialize (IHl2 H).
specialize (IHr2 H).
inv.
elim_compare x1 x2.
+ rewrite H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
* assert (X.eq a x2) by order; intuition_in.
* assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
+ rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
* constructor 2. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
* rewrite mem_spec; auto.
assert (InT x1 (Node c2 l2 x2 r2)) by auto; intuition_in; order.
+ rewrite IHr2 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
* assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
* assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
Lemma subset_spec : forall s1 s2 `{Ok s1, Ok s2},
(subset s1 s2 = true <-> Subset s1 s2).
Proof.
induction s1 as [|c1 l1 IHl1 x1 r1 IHr1]; simpl; intros.
- unfold Subset; intuition_in.
- destruct s2 as [|c2 l2 x2 r2]; simpl; intros.
+ unfold Subset; intuition_in; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
+ inv.
elim_compare x1 x2.
* rewrite <-andb_lazy_alt, andb_true_iff, IHl1, IHr1 by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
-- assert (X.eq a x2) by order; intuition_in.
-- assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
-- assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
* rewrite <-andb_lazy_alt, andb_true_iff, IHr1 by auto.
rewrite (@subsetl_spec (subset l1) l1 x1 c1) by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
-- assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
-- assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
* rewrite <-andb_lazy_alt, andb_true_iff, IHl1 by auto.
rewrite (@subsetr_spec (subset r1) r1 x1 c1) by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
-- assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
-- assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
(** ** Comparison *)
(** Relations [eq] and [lt] over trees *)
Module L := MSetInterface.MakeListOrdering X.
Definition eq := Equal.
#[global]
Instance eq_equiv : Equivalence eq.
Proof. firstorder. Qed.
Lemma eq_Leq : forall s s', eq s s' <-> L.eq (elements s) (elements s').
Proof.
unfold eq, Equal, L.eq; intros.
setoid_rewrite elements_spec1.
firstorder.
Qed.
Definition lt (s1 s2 : tree) : Prop :=
exists s1' s2', Ok s1' /\ Ok s2' /\ eq s1 s1' /\ eq s2 s2'
/\ L.lt (elements s1') (elements s2').
Declare Equivalent Keys L.eq equivlistA.
#[global]
Instance lt_strorder : StrictOrder lt.
Proof.
split.
- intros s (s1 & s2 & B1 & B2 & E1 & E2 & L).
assert (eqlistA X.eq (elements s1) (elements s2)).
+ apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
rewrite <- eq_Leq. transitivity s; auto. symmetry; auto.
+ rewrite H in L.
apply (StrictOrder_Irreflexive (elements s2)); auto.
- intros s1 s2 s3 (s1' & s2' & B1 & B2 & E1 & E2 & L12)
(s2'' & s3' & B2' & B3 & E2' & E3 & L23).
exists s1', s3'; do 4 (split; trivial).
assert (eqlistA X.eq (elements s2') (elements s2'')).
+ apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
rewrite <- eq_Leq. transitivity s2; auto. symmetry; auto.
+ transitivity (elements s2'); auto.
rewrite H; auto.
Qed.
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
intros s1 s2 E12 s3 s4 E34. split.
- intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
exists s1', s3'; do 2 (split; trivial).
split.
+ transitivity s1; auto. symmetry; auto.
+ split; auto. transitivity s3; auto. symmetry; auto.
- intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
exists s1', s3'; do 2 (split; trivial).
split.
+ transitivity s2; auto.
+ split; auto. transitivity s4; auto.
Qed.
(** Proof of the comparison algorithm *)
(** [flatten_e e] returns the list of elements of [e] i.e. the list
of elements actually compared *)
Fixpoint flatten_e (e : enumeration) : list elt := match e with
| End => nil
| More x t r => x :: elements t ++ flatten_e r
end.
Lemma flatten_e_elements :
forall l x r c e,
elements l ++ flatten_e (More x r e) = elements (Node c l x r) ++ flatten_e e.
Proof.
intros. now rewrite elements_node, <- app_assoc.
Qed.
Lemma cons_1 : forall s e,
flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
induction s; simpl; auto; intros.
rewrite IHs1; apply flatten_e_elements.
Qed.
(** Correctness of this comparison *)
Definition Cmp c x y := CompSpec L.eq L.lt x y c.
Local Hint Unfold Cmp flip : core.
Lemma compare_end_Cmp :
forall e2, Cmp (compare_end e2) nil (flatten_e e2).
Proof.
destruct e2; simpl; constructor; auto. reflexivity.
Qed.
Lemma compare_more_Cmp : forall x1 cont x2 r2 e2 l,
Cmp (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
Cmp (compare_more x1 cont (More x2 r2 e2)) (x1::l)
(flatten_e (More x2 r2 e2)).
Proof.
simpl; intros; elim_compare x1 x2; simpl; red; auto.
Qed.
Lemma compare_cont_Cmp : forall s1 cont e2 l,
(forall e, Cmp (cont e) l (flatten_e e)) ->
Cmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2).
Proof.
induction s1 as [|c1 l1 Hl1 x1 r1 Hr1]; intros; auto.
rewrite elements_node, <- app_assoc; simpl.
apply Hl1; auto. clear e2. intros [|x2 r2 e2].
- simpl; auto.
- apply compare_more_Cmp.
rewrite <- cons_1; auto.
Qed.
Lemma compare_Cmp : forall s1 s2,
Cmp (compare s1 s2) (elements s1) (elements s2).
Proof.
intros; unfold compare.
rewrite <- (app_nil_r (elements s1)).
replace (elements s2) with (flatten_e (cons s2 End)) by
(rewrite cons_1; simpl; rewrite app_nil_r; auto).
apply compare_cont_Cmp; auto.
intros.
apply compare_end_Cmp; auto.
Qed.
Lemma compare_spec : forall s1 s2 `{Ok s1, Ok s2},
CompSpec eq lt s1 s2 (compare s1 s2).
Proof.
intros.
destruct (compare_Cmp s1 s2); constructor.
- rewrite eq_Leq; auto.
- intros; exists s1, s2; repeat split; auto.
- intros; exists s2, s1; repeat split; auto.
Qed.
(** ** Equality test *)
Lemma equal_spec : forall s1 s2 `{Ok s1, Ok s2},
equal s1 s2 = true <-> eq s1 s2.
Proof.
unfold equal; intros s1 s2 B1 B2.
destruct (@compare_spec s1 s2 B1 B2) as [H|H|H];
split; intros H'; auto; try discriminate.
- rewrite H' in H. elim (StrictOrder_Irreflexive s2); auto.
- rewrite H' in H. elim (StrictOrder_Irreflexive s2); auto.
Qed.
(** ** A few results about [mindepth] and [maxdepth] *)
Lemma mindepth_maxdepth s : mindepth s <= maxdepth s.
Proof.
induction s; simpl; auto.
rewrite <- Nat.succ_le_mono.
transitivity (mindepth s1).
- apply Nat.le_min_l.
- transitivity (maxdepth s1).
+ trivial.
+ apply Nat.le_max_l.
Qed.
Lemma maxdepth_cardinal s : cardinal s < 2^(maxdepth s).
Proof.
unfold Peano.lt.
induction s as [|c l IHl x r IHr].
- auto.
- simpl. rewrite <- Nat.add_succ_r, <- Nat.add_succ_l, Nat.add_0_r.
apply Nat.add_le_mono; etransitivity;
try apply IHl; try apply IHr; apply Nat.pow_le_mono; auto.
* apply Nat.le_max_l.
* apply Nat.le_max_r.
Qed.
Lemma mindepth_cardinal s : 2^(mindepth s) <= S (cardinal s).
Proof.
unfold Peano.lt.
induction s as [|c l IHl x r IHr].
- auto.
- simpl. rewrite <- Nat.add_succ_r, <- Nat.add_succ_l, Nat.add_0_r.
apply Nat.add_le_mono; etransitivity;
try apply IHl; try apply IHr; apply Nat.pow_le_mono; auto.
* apply Nat.le_min_l.
* apply Nat.le_min_r.
Qed.
Lemma maxdepth_log_cardinal s : s <> Leaf ->
Nat.log2 (cardinal s) < maxdepth s.
Proof.
intros H.
apply Nat.log2_lt_pow2.
- destruct s; simpl; intuition auto with arith.
- apply maxdepth_cardinal.
Qed.
Lemma mindepth_log_cardinal s : mindepth s <= Nat.log2 (S (cardinal s)).
Proof.
apply Nat.log2_le_pow2.
- auto with arith.
- apply mindepth_cardinal.
Qed.
End Props.
|