1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
(** * Euclidean Division for integers (Trunc convention)
We use here the convention known as Trunc, or Round-Toward-Zero,
where [a/b] is the integer with the largest absolute value to
be between zero and the exact fraction. It can be summarized by:
[a = bq+r /\ 0 <= |r| < |b| /\ Sign(r) = Sign(a)]
This is the convention of Ocaml and many other systems (C, ASM, ...).
This convention is named "T" in the following paper:
R. Boute, "The Euclidean definition of the functions div and mod",
ACM Transactions on Programming Languages and Systems,
Vol. 14, No.2, pp. 127-144, April 1992.
See files [ZDivFloor] and [ZDivEucl] for others conventions.
*)
Module Type ZQuotProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
(Import C : ZSgnAbsProp A B).
(** We benefit from what already exists for NZ *)
Module Import Private_Div.
Module Quot2Div <: NZDiv A.
Definition div := quot.
Definition modulo := A.rem.
Definition div_wd := quot_wd.
Definition mod_wd := rem_wd.
Definition div_mod := quot_rem.
Definition mod_bound_pos := rem_bound_pos.
End Quot2Div.
Module NZQuot := Nop <+ NZDivProp A Quot2Div B.
End Private_Div.
Ltac pos_or_neg a :=
let LT := fresh "LT" in
let LE := fresh "LE" in
destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT].
(** Another formulation of the main equation *)
Lemma rem_eq :
forall a b, b~=0 -> a rem b == a - b*(a÷b).
Proof.
intros.
rewrite <- add_move_l.
symmetry. now apply quot_rem.
Qed.
(** A few sign rules (simple ones) *)
Lemma rem_opp_opp : forall a b, b ~= 0 -> (-a) rem (-b) == - (a rem b).
Proof. intros. now rewrite rem_opp_r, rem_opp_l. Qed.
Lemma quot_opp_l : forall a b, b ~= 0 -> (-a)÷b == -(a÷b).
Proof.
intros a b ?.
rewrite <- (mul_cancel_l _ _ b) by trivial.
rewrite <- (add_cancel_r _ _ ((-a) rem b)).
now rewrite <- quot_rem, rem_opp_l, mul_opp_r, <- opp_add_distr, <- quot_rem.
Qed.
Lemma quot_opp_r : forall a b, b ~= 0 -> a÷(-b) == -(a÷b).
Proof.
intros a b ?.
assert (-b ~= 0) by (now rewrite eq_opp_l, opp_0).
rewrite <- (mul_cancel_l _ _ (-b)) by trivial.
rewrite <- (add_cancel_r _ _ (a rem (-b))).
now rewrite <- quot_rem, rem_opp_r, mul_opp_opp, <- quot_rem.
Qed.
Lemma quot_opp_opp : forall a b, b ~= 0 -> (-a)÷(-b) == a÷b.
Proof. intros. now rewrite quot_opp_r, quot_opp_l, opp_involutive. Qed.
(** Uniqueness theorems *)
Theorem quot_rem_unique : forall b q1 q2 r1 r2 : t,
(0<=r1<b \/ b<r1<=0) -> (0<=r2<b \/ b<r2<=0) ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
destruct Hr1; destruct Hr2; try (intuition; order).
- apply NZQuot.div_mod_unique with b; trivial.
- rewrite <- (opp_inj_wd r1 r2).
apply NZQuot.div_mod_unique with (-b); trivial.
+ rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
+ rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto.
+ now rewrite 2 mul_opp_l, <- 2 opp_add_distr, opp_inj_wd.
Qed.
Theorem quot_unique:
forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> q == a÷b.
Proof. intros a b q r **; now apply NZQuot.div_unique with r. Qed.
Theorem rem_unique:
forall a b q r, 0<=a -> 0<=r<b -> a == b*q + r -> r == a rem b.
Proof. intros a b q r **; now apply NZQuot.mod_unique with q. Qed.
(** A division by itself returns 1 *)
Lemma quot_same : forall a, a~=0 -> a÷a == 1.
Proof.
intros a ?. pos_or_neg a.
- apply NZQuot.div_same; order.
- rewrite <- quot_opp_opp by trivial. now apply NZQuot.div_same.
Qed.
Lemma rem_same : forall a, a~=0 -> a rem a == 0.
Proof.
intros. rewrite rem_eq, quot_same by trivial. nzsimpl. apply sub_diag.
Qed.
(** A division of a small number by a bigger one yields zero. *)
Theorem quot_small: forall a b, 0<=a<b -> a÷b == 0.
Proof. exact NZQuot.div_small. Qed.
(** Same situation, in term of remulo: *)
Theorem rem_small: forall a b, 0<=a<b -> a rem b == a.
Proof. exact NZQuot.mod_small. Qed.
(** * Basic values of divisions and modulo. *)
Lemma quot_0_l: forall a, a~=0 -> 0÷a == 0.
Proof.
intros a ?. pos_or_neg a.
- apply NZQuot.div_0_l; order.
- rewrite <- quot_opp_opp, opp_0 by trivial. now apply NZQuot.div_0_l.
Qed.
Lemma rem_0_l: forall a, a~=0 -> 0 rem a == 0.
Proof.
intros; rewrite rem_eq, quot_0_l; now nzsimpl.
Qed.
Lemma quot_1_r: forall a, a÷1 == a.
Proof.
intros a. pos_or_neg a.
- now apply NZQuot.div_1_r.
- apply opp_inj. rewrite <- quot_opp_l.
+ apply NZQuot.div_1_r; order.
+ intro EQ; symmetry in EQ; revert EQ; apply lt_neq, lt_0_1.
Qed.
Lemma rem_1_r: forall a, a rem 1 == 0.
Proof.
intros. rewrite rem_eq, quot_1_r; nzsimpl; auto using sub_diag.
intro EQ; symmetry in EQ; revert EQ; apply lt_neq; apply lt_0_1.
Qed.
Lemma quot_1_l: forall a, 1<a -> 1÷a == 0.
Proof. exact NZQuot.div_1_l. Qed.
Lemma rem_1_l: forall a, 1<a -> 1 rem a == 1.
Proof. exact NZQuot.mod_1_l. Qed.
Lemma quot_mul : forall a b, b~=0 -> (a*b)÷b == a.
Proof.
intros a b ?. pos_or_neg a; pos_or_neg b.
- apply NZQuot.div_mul; order.
- rewrite <- quot_opp_opp, <- mul_opp_r by order. apply NZQuot.div_mul; order.
- rewrite <- opp_inj_wd, <- quot_opp_l, <- mul_opp_l by order.
apply NZQuot.div_mul; order.
- rewrite <- opp_inj_wd, <- quot_opp_r, <- mul_opp_opp by order.
apply NZQuot.div_mul; order.
Qed.
Lemma rem_mul : forall a b, b~=0 -> (a*b) rem b == 0.
Proof.
intros. rewrite rem_eq, quot_mul by trivial. rewrite mul_comm; apply sub_diag.
Qed.
Theorem quot_unique_exact a b q: b~=0 -> a == b*q -> q == a÷b.
Proof.
intros Hb H. rewrite H, mul_comm. symmetry. now apply quot_mul.
Qed.
(** The sign of [a rem b] is the one of [a] (when it's not null) *)
Lemma rem_nonneg : forall a b, b~=0 -> 0 <= a -> 0 <= a rem b.
Proof.
intros a b **. pos_or_neg b.
- destruct (rem_bound_pos a b); order.
- rewrite <- rem_opp_r; trivial.
destruct (rem_bound_pos a (-b)); trivial.
Qed.
Lemma rem_nonpos : forall a b, b~=0 -> a <= 0 -> a rem b <= 0.
Proof.
intros a b Hb Ha.
apply opp_nonneg_nonpos. apply opp_nonneg_nonpos in Ha.
rewrite <- rem_opp_l by trivial. now apply rem_nonneg.
Qed.
Lemma rem_sign_mul : forall a b, b~=0 -> 0 <= (a rem b) * a.
Proof.
intros a b Hb. destruct (le_ge_cases 0 a).
- apply mul_nonneg_nonneg; trivial. now apply rem_nonneg.
- apply mul_nonpos_nonpos; trivial. now apply rem_nonpos.
Qed.
Lemma rem_sign_nz : forall a b, b~=0 -> a rem b ~= 0 ->
sgn (a rem b) == sgn a.
Proof.
intros a b Hb H. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
- rewrite 2 sgn_pos; try easy.
generalize (rem_nonneg a b Hb (lt_le_incl _ _ LT)). order.
- now rewrite <- EQ, rem_0_l, sgn_0.
- rewrite 2 sgn_neg; try easy.
generalize (rem_nonpos a b Hb (lt_le_incl _ _ LT)). order.
Qed.
Lemma rem_sign : forall a b, a~=0 -> b~=0 -> sgn (a rem b) ~= -sgn a.
Proof.
intros a b Ha Hb H.
destruct (eq_decidable (a rem b) 0) as [EQ|NEQ].
- apply Ha, sgn_null_iff, opp_inj. now rewrite <- H, opp_0, EQ, sgn_0.
- apply Ha, sgn_null_iff. apply eq_mul_0_l with 2; try order'. nzsimpl'.
apply add_move_0_l. rewrite <- H. symmetry. now apply rem_sign_nz.
Qed.
(** Operations and absolute value *)
Lemma rem_abs_l : forall a b, b ~= 0 -> (abs a) rem b == abs (a rem b).
Proof.
intros a b Hb. destruct (le_ge_cases 0 a) as [LE|LE].
- rewrite 2 abs_eq; try easy. now apply rem_nonneg.
- rewrite 2 abs_neq, rem_opp_l; try easy. now apply rem_nonpos.
Qed.
Lemma rem_abs_r : forall a b, b ~= 0 -> a rem (abs b) == a rem b.
Proof.
intros a b Hb. destruct (le_ge_cases 0 b).
- now rewrite abs_eq.
- now rewrite abs_neq, ?rem_opp_r.
Qed.
Lemma rem_abs : forall a b, b ~= 0 -> (abs a) rem (abs b) == abs (a rem b).
Proof.
intros. now rewrite rem_abs_r, rem_abs_l.
Qed.
Lemma quot_abs_l : forall a b, b ~= 0 -> (abs a)÷b == (sgn a)*(a÷b).
Proof.
intros a b Hb. destruct (lt_trichotomy 0 a) as [LT|[EQ|LT]].
- rewrite abs_eq, sgn_pos by order. now nzsimpl.
- rewrite <- EQ, abs_0, quot_0_l; trivial. now nzsimpl.
- rewrite abs_neq, quot_opp_l, sgn_neg by order.
rewrite mul_opp_l. now nzsimpl.
Qed.
Lemma quot_abs_r : forall a b, b ~= 0 -> a÷(abs b) == (sgn b)*(a÷b).
Proof.
intros a b Hb. destruct (lt_trichotomy 0 b) as [LT|[EQ|LT]].
- rewrite abs_eq, sgn_pos by order. now nzsimpl.
- order.
- rewrite abs_neq, quot_opp_r, sgn_neg by order.
rewrite mul_opp_l. now nzsimpl.
Qed.
Lemma quot_abs : forall a b, b ~= 0 -> (abs a)÷(abs b) == abs (a÷b).
Proof.
intros a b Hb.
pos_or_neg a; [rewrite (abs_eq a)|rewrite (abs_neq a)];
try apply opp_nonneg_nonpos; try order.
- pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
try apply opp_nonneg_nonpos; try order.
+ rewrite abs_eq; try easy. apply NZQuot.div_pos; order.
+ rewrite <- abs_opp, <- quot_opp_r, abs_eq; try easy.
apply NZQuot.div_pos; order.
- pos_or_neg b; [rewrite (abs_eq b)|rewrite (abs_neq b)];
try apply opp_nonneg_nonpos; try order.
+ rewrite <- (abs_opp (_÷_)), <- quot_opp_l, abs_eq; try easy.
apply NZQuot.div_pos; order.
+ rewrite <- (quot_opp_opp a b), abs_eq; try easy.
apply NZQuot.div_pos; order.
Qed.
(** We have a general bound for absolute values *)
Lemma rem_bound_abs :
forall a b, b~=0 -> abs (a rem b) < abs b.
Proof.
intros. rewrite <- rem_abs; trivial.
apply rem_bound_pos.
- apply abs_nonneg.
- now apply abs_pos.
Qed.
(** * Order results about rem and quot *)
(** A modulo cannot grow beyond its starting point. *)
Theorem rem_le: forall a b, 0<=a -> 0<b -> a rem b <= a.
Proof. exact NZQuot.mod_le. Qed.
Theorem quot_pos : forall a b, 0<=a -> 0<b -> 0<= a÷b.
Proof. exact NZQuot.div_pos. Qed.
Lemma quot_str_pos : forall a b, 0<b<=a -> 0 < a÷b.
Proof. exact NZQuot.div_str_pos. Qed.
Lemma quot_small_iff : forall a b, b~=0 -> (a÷b==0 <-> abs a < abs b).
Proof.
intros a b ?. pos_or_neg a; pos_or_neg b.
- rewrite NZQuot.div_small_iff; try order. rewrite 2 abs_eq; intuition; order.
- rewrite <- opp_inj_wd, opp_0, <- quot_opp_r, NZQuot.div_small_iff by order.
rewrite (abs_eq a), (abs_neq' b); intuition; order.
- rewrite <- opp_inj_wd, opp_0, <- quot_opp_l, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_eq b); intuition; order.
- rewrite <- quot_opp_opp, NZQuot.div_small_iff by order.
rewrite (abs_neq' a), (abs_neq' b); intuition; order.
Qed.
Lemma rem_small_iff : forall a b, b~=0 -> (a rem b == a <-> abs a < abs b).
Proof.
intros a b ?. rewrite rem_eq, <- quot_small_iff by order.
rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l.
rewrite eq_sym_iff, eq_mul_0. tauto.
Qed.
(** As soon as the divisor is strictly greater than 1,
the division is strictly decreasing. *)
Lemma quot_lt : forall a b, 0<a -> 1<b -> a÷b < a.
Proof. exact NZQuot.div_lt. Qed.
(** [le] is compatible with a positive division. *)
Lemma quot_le_mono : forall a b c, 0<c -> a<=b -> a÷c <= b÷c.
Proof.
intros a b c **. pos_or_neg a.
- apply NZQuot.div_le_mono; auto.
- pos_or_neg b.
+ apply le_trans with 0.
* rewrite <- opp_nonneg_nonpos, <- quot_opp_l by order.
apply quot_pos; order.
* apply quot_pos; order.
+ rewrite opp_le_mono in *. rewrite <- 2 quot_opp_l by order.
apply NZQuot.div_le_mono; intuition; order.
Qed.
(** With this choice of division,
rounding of quot is always done toward zero: *)
Lemma mul_quot_le : forall a b, 0<=a -> b~=0 -> 0 <= b*(a÷b) <= a.
Proof.
intros a b **. pos_or_neg b.
- split.
+ apply mul_nonneg_nonneg; [|apply quot_pos]; order.
+ apply NZQuot.mul_div_le; order.
- rewrite <- mul_opp_opp, <- quot_opp_r by order.
split.
+ apply mul_nonneg_nonneg; [|apply quot_pos]; order.
+ apply NZQuot.mul_div_le; order.
Qed.
Lemma mul_quot_ge : forall a b, a<=0 -> b~=0 -> a <= b*(a÷b) <= 0.
Proof.
intros a b **.
rewrite <- opp_nonneg_nonpos, opp_le_mono, <-mul_opp_r, <-quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
destruct (mul_quot_le (-a) b); tauto.
Qed.
(** For positive numbers, considering [S (a÷b)] leads to an upper bound for [a] *)
Lemma mul_succ_quot_gt: forall a b, 0<=a -> 0<b -> a < b*(S (a÷b)).
Proof. exact NZQuot.mul_succ_div_gt. Qed.
(** Similar results with negative numbers *)
Lemma mul_pred_quot_lt: forall a b, a<=0 -> 0<b -> b*(P (a÷b)) < a.
Proof.
intros.
rewrite opp_lt_mono, <- mul_opp_r, opp_pred, <- quot_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
now apply mul_succ_quot_gt.
Qed.
Lemma mul_pred_quot_gt: forall a b, 0<=a -> b<0 -> a < b*(P (a÷b)).
Proof.
intros.
rewrite <- mul_opp_opp, opp_pred, <- quot_opp_r by order.
rewrite <- opp_pos_neg in *.
now apply mul_succ_quot_gt.
Qed.
Lemma mul_succ_quot_lt: forall a b, a<=0 -> b<0 -> b*(S (a÷b)) < a.
Proof.
intros.
rewrite opp_lt_mono, <- mul_opp_l, <- quot_opp_opp by order.
rewrite <- opp_nonneg_nonpos, <- opp_pos_neg in *.
now apply mul_succ_quot_gt.
Qed.
(** Inequality [mul_quot_le] is exact iff the modulo is zero. *)
Lemma quot_exact : forall a b, b~=0 -> (a == b*(a÷b) <-> a rem b == 0).
Proof.
intros. rewrite rem_eq by order. rewrite sub_move_r; nzsimpl; tauto.
Qed.
(** Some additional inequalities about quot. *)
Theorem quot_lt_upper_bound:
forall a b q, 0<=a -> 0<b -> a < b*q -> a÷b < q.
Proof. exact NZQuot.div_lt_upper_bound. Qed.
Theorem quot_le_upper_bound:
forall a b q, 0<b -> a <= b*q -> a÷b <= q.
Proof.
intros a b q **.
rewrite <- (quot_mul q b) by order.
apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
Theorem quot_le_lower_bound:
forall a b q, 0<b -> b*q <= a -> q <= a÷b.
Proof.
intros a b q **.
rewrite <- (quot_mul q b) by order.
apply quot_le_mono; trivial. now rewrite mul_comm.
Qed.
(** A division respects opposite monotonicity for the divisor *)
Lemma quot_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p÷r <= p÷q.
Proof. exact NZQuot.div_le_compat_l. Qed.
(** * Relations between usual operations and rem and quot *)
(** Unlike with other division conventions, some results here aren't
always valid, and need to be restricted. For instance
[(a+b*c) rem c <> a rem c] for [a=9,b=-5,c=2] *)
Lemma rem_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
(a + b * c) rem c == a rem c.
Proof.
assert (forall a b c, c~=0 -> 0<=a -> 0<=a+b*c -> (a+b*c) rem c == a rem c). {
intros a b c **. pos_or_neg c.
- apply NZQuot.mod_add; order.
- rewrite <- (rem_opp_r a), <- (rem_opp_r (a+b*c)) by order.
rewrite <- mul_opp_opp in *.
apply NZQuot.mod_add; order.
}
intros a b c Hc Habc.
destruct (le_0_mul _ _ Habc) as [(Habc',Ha)|(Habc',Ha)]. { auto. }
apply opp_inj. revert Ha Habc'.
rewrite <- 2 opp_nonneg_nonpos.
rewrite <- 2 rem_opp_l, opp_add_distr, <- mul_opp_l by order. auto.
Qed.
Lemma quot_add : forall a b c, c~=0 -> 0 <= (a+b*c)*a ->
(a + b * c) ÷ c == a ÷ c + b.
Proof.
intros a b c **.
rewrite <- (mul_cancel_l _ _ c) by trivial.
rewrite <- (add_cancel_r _ _ ((a+b*c) rem c)).
rewrite <- quot_rem, rem_add by trivial.
now rewrite mul_add_distr_l, add_shuffle0, <-quot_rem, mul_comm.
Qed.
Lemma quot_add_l: forall a b c, b~=0 -> 0 <= (a*b+c)*c ->
(a * b + c) ÷ b == a + c ÷ b.
Proof.
intros a b c. rewrite add_comm, (add_comm a). now apply quot_add.
Qed.
(** Cancellations. *)
Lemma quot_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
(a*c)÷(b*c) == a÷b.
Proof.
assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a*c)÷(b*c) == a÷b). {
intros a b c **. pos_or_neg c.
- apply NZQuot.div_mul_cancel_r; order.
- rewrite <- quot_opp_opp, <- 2 mul_opp_r.
+ apply NZQuot.div_mul_cancel_r; order.
+ rewrite <- neq_mul_0; intuition order.
}
assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a*c)÷(b*c) == a÷b). {
intros a b c **. pos_or_neg b.
- apply Aux1; order.
- apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_l; try order.
+ apply Aux1; order.
+ rewrite <- neq_mul_0; intuition order.
}
intros a b c **. pos_or_neg a. { apply Aux2; order. }
apply opp_inj. rewrite <- 2 quot_opp_l, <- mul_opp_l; try order. { apply Aux2; order. }
rewrite <- neq_mul_0; intuition order.
Qed.
Lemma quot_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
(c*a)÷(c*b) == a÷b.
Proof.
intros a b c **. rewrite !(mul_comm c); now apply quot_mul_cancel_r.
Qed.
Lemma mul_rem_distr_r: forall a b c, b~=0 -> c~=0 ->
(a*c) rem (b*c) == (a rem b) * c.
Proof.
intros a b c **.
assert (b*c ~= 0) by (rewrite <- neq_mul_0; tauto).
rewrite ! rem_eq by trivial.
rewrite quot_mul_cancel_r by order.
now rewrite mul_sub_distr_r, <- !mul_assoc, (mul_comm (a÷b) c).
Qed.
Lemma mul_rem_distr_l: forall a b c, b~=0 -> c~=0 ->
(c*a) rem (c*b) == c * (a rem b).
Proof.
intros a b c **; rewrite !(mul_comm c); now apply mul_rem_distr_r.
Qed.
(** Operations modulo. *)
Theorem rem_rem: forall a n, n~=0 ->
(a rem n) rem n == a rem n.
Proof.
intros a n **. pos_or_neg a; pos_or_neg n.
- apply NZQuot.mod_mod; order.
- rewrite <- ! (rem_opp_r _ n) by trivial. apply NZQuot.mod_mod; order.
- apply opp_inj. rewrite <- !rem_opp_l by order. apply NZQuot.mod_mod; order.
- apply opp_inj. rewrite <- !rem_opp_opp by order. apply NZQuot.mod_mod; order.
Qed.
Lemma mul_rem_idemp_l : forall a b n, n~=0 ->
((a rem n)*b) rem n == (a*b) rem n.
Proof.
assert (Aux1 : forall a b n, 0<=a -> 0<=b -> n~=0 ->
((a rem n)*b) rem n == (a*b) rem n). {
intros a b n **. pos_or_neg n.
- apply NZQuot.mul_mod_idemp_l; order.
- rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.mul_mod_idemp_l; order.
}
assert (Aux2 : forall a b n, 0<=a -> n~=0 ->
((a rem n)*b) rem n == (a*b) rem n). {
intros a b n **. pos_or_neg b.
- now apply Aux1.
- apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_r by order.
apply Aux1; order.
}
intros a b n Hn. pos_or_neg a. { now apply Aux2. }
apply opp_inj. rewrite <-2 rem_opp_l, <-2 mul_opp_l, <-rem_opp_l by order.
apply Aux2; order.
Qed.
Lemma mul_rem_idemp_r : forall a b n, n~=0 ->
(a*(b rem n)) rem n == (a*b) rem n.
Proof.
intros a b n **. rewrite !(mul_comm a). now apply mul_rem_idemp_l.
Qed.
Theorem mul_rem: forall a b n, n~=0 ->
(a * b) rem n == ((a rem n) * (b rem n)) rem n.
Proof.
intros. now rewrite mul_rem_idemp_l, mul_rem_idemp_r.
Qed.
(** addition and modulo
Generally speaking, unlike with other conventions, we don't have
[(a+b) rem n = (a rem n + b rem n) rem n]
for any a and b.
For instance, take (8 + (-10)) rem 3 = -2 whereas
(8 rem 3 + (-10 rem 3)) rem 3 = 1.
*)
Lemma add_rem_idemp_l : forall a b n, n~=0 -> 0 <= a*b ->
((a rem n)+b) rem n == (a+b) rem n.
Proof.
assert (Aux : forall a b n, 0<=a -> 0<=b -> n~=0 ->
((a rem n)+b) rem n == (a+b) rem n). {
intros a b n **. pos_or_neg n. { apply NZQuot.add_mod_idemp_l; order. }
rewrite <- ! (rem_opp_r _ n) by order. apply NZQuot.add_mod_idemp_l; order.
}
intros a b n Hn Hab. destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)].
{ now apply Aux. }
apply opp_inj. rewrite <-2 rem_opp_l, 2 opp_add_distr, <-rem_opp_l by order.
rewrite <- opp_nonneg_nonpos in *.
now apply Aux.
Qed.
Lemma add_rem_idemp_r : forall a b n, n~=0 -> 0 <= a*b ->
(a+(b rem n)) rem n == (a+b) rem n.
Proof.
intros a b n **. rewrite !(add_comm a). apply add_rem_idemp_l; trivial.
now rewrite mul_comm.
Qed.
Theorem add_rem: forall a b n, n~=0 -> 0 <= a*b ->
(a+b) rem n == (a rem n + b rem n) rem n.
Proof.
intros a b n Hn Hab. rewrite add_rem_idemp_l, add_rem_idemp_r; trivial.
- reflexivity.
- destruct (le_0_mul _ _ Hab) as [(Ha,Hb)|(Ha,Hb)];
destruct (le_0_mul _ _ (rem_sign_mul b n Hn)) as [(Hb',Hm)|(Hb',Hm)];
auto using mul_nonneg_nonneg, mul_nonpos_nonpos.
+ setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
+ setoid_replace b with 0 by order. rewrite rem_0_l by order. nzsimpl; order.
Qed.
(** Conversely, the following results need less restrictions here. *)
Lemma quot_quot : forall a b c, b~=0 -> c~=0 ->
(a÷b)÷c == a÷(b*c).
Proof.
assert (Aux1 : forall a b c, 0<=a -> 0<b -> c~=0 -> (a÷b)÷c == a÷(b*c)). {
intros a b c **. pos_or_neg c. { apply NZQuot.div_div; order. }
apply opp_inj. rewrite <- 2 quot_opp_r, <- mul_opp_r; trivial.
{ apply NZQuot.div_div; order. }
rewrite <- neq_mul_0; intuition order.
}
assert (Aux2 : forall a b c, 0<=a -> b~=0 -> c~=0 -> (a÷b)÷c == a÷(b*c)). {
intros a b c **. pos_or_neg b. { apply Aux1; order. }
apply opp_inj. rewrite <- quot_opp_l, <- 2 quot_opp_r, <- mul_opp_l; trivial.
{ apply Aux1; trivial. }
rewrite <- neq_mul_0; intuition order.
}
intros a b c **. pos_or_neg a. { apply Aux2; order. }
apply opp_inj. rewrite <- 3 quot_opp_l; try order. { apply Aux2; order. }
rewrite <- neq_mul_0. tauto.
Qed.
Lemma mod_mul_r : forall a b c, b~=0 -> c~=0 ->
a rem (b*c) == a rem b + b*((a÷b) rem c).
Proof.
intros a b c Hb Hc.
apply add_cancel_l with (b*c*(a÷(b*c))).
rewrite <- quot_rem by (apply neq_mul_0; split; order).
rewrite <- quot_quot by trivial.
rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l.
rewrite <- quot_rem by order.
apply quot_rem; order.
Qed.
Lemma rem_quot: forall a b, b~=0 ->
a rem b ÷ b == 0.
Proof.
intros a b Hb.
rewrite quot_small_iff by assumption.
auto using rem_bound_abs.
Qed.
(** A last inequality: *)
Theorem quot_mul_le:
forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a÷b) <= (c*a)÷b.
Proof. exact NZQuot.div_mul_le. Qed.
End ZQuotProp.
|