1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Properties of the greatest common divisor *)
From Stdlib Require Import ZAxioms ZMulOrder ZSgnAbs NZGcd.
Module Type ZGcdProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
(Import C : ZSgnAbsProp A B).
Include NZGcdProp A A B.
(** Results concerning divisibility*)
Lemma divide_opp_l : forall n m, (-n | m) <-> (n | m).
Proof.
intros n m. split; intros (p,Hp); exists (-p); rewrite Hp.
- now rewrite mul_opp_l, mul_opp_r.
- now rewrite mul_opp_opp.
Qed.
Lemma divide_opp_r : forall n m, (n | -m) <-> (n | m).
Proof.
intros n m. split; intros (p,Hp); exists (-p).
- now rewrite mul_opp_l, <- Hp, opp_involutive.
- now rewrite Hp, mul_opp_l.
Qed.
Lemma divide_abs_l : forall n m, (abs n | m) <-> (n | m).
Proof.
intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
- easy.
- apply divide_opp_l.
Qed.
Lemma divide_abs_r : forall n m, (n | abs m) <-> (n | m).
Proof.
intros n m. destruct (abs_eq_or_opp m) as [H|H]; rewrite H.
- easy.
- apply divide_opp_r.
Qed.
Lemma divide_1_r_abs : forall n, (n | 1) -> abs n == 1.
Proof.
intros n Hn. apply divide_1_r_nonneg.
- apply abs_nonneg.
- now apply divide_abs_l.
Qed.
Lemma divide_1_r : forall n, (n | 1) -> n==1 \/ n==-1.
Proof.
intros n (m,H). rewrite mul_comm in H. now apply eq_mul_1 with m.
Qed.
Lemma divide_antisym_abs : forall n m,
(n | m) -> (m | n) -> abs n == abs m.
Proof.
intros. apply divide_antisym_nonneg; try apply abs_nonneg.
- now apply divide_abs_l, divide_abs_r.
- now apply divide_abs_l, divide_abs_r.
Qed.
Lemma divide_antisym : forall n m,
(n | m) -> (m | n) -> n == m \/ n == -m.
Proof.
intros. now apply abs_eq_cases, divide_antisym_abs.
Qed.
Lemma divide_sub_r : forall n m p, (n | m) -> (n | p) -> (n | m - p).
Proof.
intros n m p H H'. rewrite <- add_opp_r.
apply divide_add_r; trivial. now apply divide_opp_r.
Qed.
Lemma divide_add_cancel_r : forall n m p, (n | m) -> (n | m + p) -> (n | p).
Proof.
intros n m p H H'. rewrite <- (add_simpl_l m p). now apply divide_sub_r.
Qed.
(** Properties of gcd *)
Lemma gcd_opp_l : forall n m, gcd (-n) m == gcd n m.
Proof.
intros. apply gcd_unique_alt; try apply gcd_nonneg.
intros. rewrite divide_opp_r. apply gcd_divide_iff.
Qed.
Lemma gcd_opp_r : forall n m, gcd n (-m) == gcd n m.
Proof.
intros. now rewrite gcd_comm, gcd_opp_l, gcd_comm.
Qed.
Lemma gcd_abs_l : forall n m, gcd (abs n) m == gcd n m.
Proof.
intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
- easy.
- apply gcd_opp_l.
Qed.
Lemma gcd_abs_r : forall n m, gcd n (abs m) == gcd n m.
Proof.
intros. now rewrite gcd_comm, gcd_abs_l, gcd_comm.
Qed.
Lemma gcd_0_l : forall n, gcd 0 n == abs n.
Proof.
intros. rewrite <- gcd_abs_r. apply gcd_0_l_nonneg, abs_nonneg.
Qed.
Lemma gcd_0_r : forall n, gcd n 0 == abs n.
Proof.
intros. now rewrite gcd_comm, gcd_0_l.
Qed.
Lemma gcd_diag : forall n, gcd n n == abs n.
Proof.
intros. rewrite <- gcd_abs_l, <- gcd_abs_r.
apply gcd_diag_nonneg, abs_nonneg.
Qed.
Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m.
Proof.
intros n m p. apply gcd_unique_alt; try apply gcd_nonneg.
intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial.
- apply divide_add_r; trivial. now apply divide_mul_r.
- apply divide_add_cancel_r with (p*n); trivial.
+ now apply divide_mul_r.
+ now rewrite add_comm.
Qed.
Lemma gcd_add_diag_r : forall n m, gcd n (m+n) == gcd n m.
Proof.
intros n m. rewrite <- (mul_1_l n) at 2. apply gcd_add_mult_diag_r.
Qed.
Lemma gcd_sub_diag_r : forall n m, gcd n (m-n) == gcd n m.
Proof.
intros n m. rewrite <- (mul_1_l n) at 2.
rewrite <- add_opp_r, <- mul_opp_l. apply gcd_add_mult_diag_r.
Qed.
Definition Bezout n m p := exists a b, a*n + b*m == p.
#[global]
Instance Bezout_wd : Proper (eq==>eq==>eq==>iff) Bezout.
Proof.
unfold Bezout. intros x x' Hx y y' Hy z z' Hz.
setoid_rewrite Hx. setoid_rewrite Hy. now setoid_rewrite Hz.
Qed.
Lemma bezout_1_gcd : forall n m, Bezout n m 1 -> gcd n m == 1.
Proof.
intros n m (q & r & H).
apply gcd_unique; trivial using divide_1_l, le_0_1.
intros p Hn Hm.
rewrite <- H. apply divide_add_r; now apply divide_mul_r.
Qed.
Lemma gcd_bezout : forall n m p, gcd n m == p -> Bezout n m p.
Proof.
(* First, a version restricted to natural numbers *)
assert (aux : forall n, 0<=n -> forall m, 0<=m -> Bezout n m (gcd n m)). {
intros n Hn; pattern n.
apply (fun H => strong_right_induction H 0); trivial.
clear n Hn. intros n Hn IHn.
apply le_lteq in Hn; destruct Hn as [Hn|Hn].
- intros m Hm; pattern m.
apply (fun H => strong_right_induction H 0); trivial.
clear m Hm. intros m Hm IHm.
destruct (lt_trichotomy n m) as [LT|[EQ|LT]].
+ (* n < m *)
destruct (IHm (m-n)) as (a & b & EQ).
* apply sub_nonneg; order.
* now apply lt_sub_pos.
* exists (a-b). exists b.
rewrite gcd_sub_diag_r in EQ. rewrite <- EQ.
rewrite mul_sub_distr_r, mul_sub_distr_l.
now rewrite add_sub_assoc, add_sub_swap.
+ (* n = m *)
rewrite EQ. rewrite gcd_diag_nonneg; trivial.
exists 1. exists 0. now nzsimpl.
+ (* m < n *)
destruct (IHn m Hm LT n) as (a & b & EQ). { order. }
exists b. exists a. now rewrite gcd_comm, <- EQ, add_comm.
- (* n = 0 *)
intros m Hm. rewrite <- Hn, gcd_0_l_nonneg; trivial.
exists 0. exists 1. now nzsimpl.
}
(* Then we relax the positivity condition on n *)
assert (aux' : forall n m, 0<=m -> Bezout n m (gcd n m)). {
intros n m Hm.
destruct (le_ge_cases 0 n).
- now apply aux.
- assert (Hn' : 0 <= -n) by now apply opp_nonneg_nonpos.
destruct (aux (-n) Hn' m Hm) as (a & b & EQ).
exists (-a). exists b. now rewrite <- gcd_opp_l, <- EQ, mul_opp_r, mul_opp_l.
}
(* And finally we do the same for m *)
intros n m p Hp. rewrite <- Hp; clear Hp.
destruct (le_ge_cases 0 m).
- now apply aux'.
- assert (Hm' : 0 <= -m) by now apply opp_nonneg_nonpos.
destruct (aux' n (-m) Hm') as (a & b & EQ).
exists a. exists (-b). now rewrite <- gcd_opp_r, <- EQ, mul_opp_r, mul_opp_l.
Qed.
Lemma gcd_mul_mono_l :
forall n m p, gcd (p * n) (p * m) == abs p * gcd n m.
Proof.
intros n m p.
apply gcd_unique.
- apply mul_nonneg_nonneg; trivial using gcd_nonneg, abs_nonneg.
- destruct (gcd_divide_l n m) as (q,Hq).
rewrite Hq at 2. rewrite mul_assoc. apply mul_divide_mono_r.
rewrite <- (abs_sgn p) at 2. rewrite <- mul_assoc. apply divide_factor_l.
- destruct (gcd_divide_r n m) as (q,Hq).
rewrite Hq at 2. rewrite mul_assoc. apply mul_divide_mono_r.
rewrite <- (abs_sgn p) at 2. rewrite <- mul_assoc. apply divide_factor_l.
- intros q H H'.
destruct (gcd_bezout n m (gcd n m) (eq_refl _)) as (a & b & EQ).
rewrite <- EQ, <- sgn_abs, mul_add_distr_l. apply divide_add_r.
+ rewrite mul_shuffle2. now apply divide_mul_l.
+ rewrite mul_shuffle2. now apply divide_mul_l.
Qed.
Lemma gcd_mul_mono_l_nonneg :
forall n m p, 0<=p -> gcd (p*n) (p*m) == p * gcd n m.
Proof.
intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_l.
Qed.
Lemma gcd_mul_mono_r :
forall n m p, gcd (n * p) (m * p) == gcd n m * abs p.
Proof.
intros n m p. now rewrite !(mul_comm _ p), gcd_mul_mono_l, mul_comm.
Qed.
Lemma gcd_mul_mono_r_nonneg :
forall n m p, 0<=p -> gcd (n*p) (m*p) == gcd n m * p.
Proof.
intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_r.
Qed.
Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p).
Proof.
intros n m p H G.
destruct (gcd_bezout n m 1 G) as (a & b & EQ).
rewrite <- (mul_1_l p), <- EQ, mul_add_distr_r.
apply divide_add_r.
- rewrite mul_shuffle0. apply divide_factor_r.
- rewrite <- mul_assoc. now apply divide_mul_r.
Qed.
Lemma divide_mul_split : forall n m p, n ~= 0 -> (n | m * p) ->
exists q r, n == q*r /\ (q | m) /\ (r | p).
Proof.
intros n m p Hn H.
assert (G := gcd_nonneg n m).
apply le_lteq in G; destruct G as [G|G].
- destruct (gcd_divide_l n m) as (q,Hq).
exists (gcd n m). exists q.
split.
+ now rewrite mul_comm.
+ split.
* apply gcd_divide_r.
* destruct (gcd_divide_r n m) as (r,Hr).
rewrite Hr in H. rewrite Hq in H at 1.
rewrite mul_shuffle0 in H. apply mul_divide_cancel_r in H; [|order].
apply gauss with r; trivial.
apply mul_cancel_r with (gcd n m); [order|].
rewrite mul_1_l.
rewrite <- gcd_mul_mono_r_nonneg, <- Hq, <- Hr; order.
- symmetry in G. apply gcd_eq_0 in G. destruct G as (Hn',_); order.
Qed.
(** TODO : more about rel_prime (i.e. gcd == 1), about prime ... *)
End ZGcdProp.
|