1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import ZAxioms ZMulOrder ZSgnAbs ZGcd ZDivTrunc ZDivFloor.
(** * Least Common Multiple *)
(** Unlike other functions around, we will define lcm below instead of
axiomatizing it. Indeed, there is no "prior art" about lcm in the
standard library to be compliant with, and the generic definition
of lcm via gcd is quite reasonable.
By the way, we also state here some combined properties of div/mod
and quot/rem and gcd.
*)
Module Type ZLcmProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
(Import C : ZSgnAbsProp A B)
(Import D : ZDivProp A B C)
(Import E : ZQuotProp A B C)
(Import F : ZGcdProp A B C).
(** The two notions of division are equal on non-negative numbers *)
Lemma quot_div_nonneg : forall a b, 0<=a -> 0<b -> a÷b == a/b.
Proof.
intros a b **. apply div_unique_pos with (a rem b).
- now apply rem_bound_pos.
- apply quot_rem. order.
Qed.
Lemma rem_mod_nonneg : forall a b, 0<=a -> 0<b -> a rem b == a mod b.
Proof.
intros a b **. apply mod_unique_pos with (a÷b).
- now apply rem_bound_pos.
- apply quot_rem. order.
Qed.
(** We can use the sign rule to have an relation between divisions. *)
Lemma quot_div : forall a b, b~=0 ->
a÷b == (sgn a)*(sgn b)*(abs a / abs b).
Proof.
assert (AUX : forall a b, 0<b -> a÷b == (sgn a)*(sgn b)*(abs a / abs b)). {
intros a b Hb. rewrite (sgn_pos b), (abs_eq b), mul_1_r by order.
destruct (lt_trichotomy 0 a) as [Ha|[Ha|Ha]].
- rewrite sgn_pos, abs_eq, mul_1_l, quot_div_nonneg; order.
- rewrite <- Ha, abs_0, sgn_0, quot_0_l, div_0_l, mul_0_l; order.
- rewrite sgn_neg, abs_neq, mul_opp_l, mul_1_l, eq_opp_r, <-quot_opp_l
by order.
apply quot_div_nonneg; trivial. apply opp_nonneg_nonpos; order.
}
(* main *)
intros a b Hb.
apply neg_pos_cases in Hb. destruct Hb as [Hb|Hb]; [|now apply AUX].
rewrite <- (opp_involutive b) at 1. rewrite quot_opp_r.
- rewrite AUX, abs_opp, sgn_opp, mul_opp_r, mul_opp_l, opp_involutive.
+ reflexivity.
+ now apply opp_pos_neg.
- rewrite eq_opp_l, opp_0; order.
Qed.
Lemma rem_mod : forall a b, b~=0 ->
a rem b == (sgn a) * ((abs a) mod (abs b)).
Proof.
intros a b Hb.
rewrite <- rem_abs_r by trivial.
assert (Hb' := proj2 (abs_pos b) Hb).
destruct (lt_trichotomy 0 a) as [Ha|[Ha|Ha]].
- rewrite (abs_eq a), sgn_pos, mul_1_l, rem_mod_nonneg; order.
- rewrite <- Ha, abs_0, sgn_0, mod_0_l, rem_0_l, mul_0_l; order.
- rewrite sgn_neg, (abs_neq a), mul_opp_l, mul_1_l, eq_opp_r, <-rem_opp_l
by order.
apply rem_mod_nonneg; trivial. apply opp_nonneg_nonpos; order.
Qed.
(** Modulo and remainder are null at the same place,
and this correspond to the divisibility relation. *)
Lemma mod_divide : forall a b, b~=0 -> (a mod b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
- intros Hab. exists (a/b). rewrite mul_comm.
rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl.
- intros (c,Hc). rewrite Hc. now apply mod_mul.
Qed.
Lemma rem_divide : forall a b, b~=0 -> (a rem b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
- intros Hab. exists (a÷b). rewrite mul_comm.
rewrite (quot_rem a b Hb) at 1. rewrite Hab; now nzsimpl.
- intros (c,Hc). rewrite Hc. now apply rem_mul.
Qed.
Lemma rem_mod_eq_0 : forall a b, b~=0 -> (a rem b == 0 <-> a mod b == 0).
Proof.
intros a b Hb. now rewrite mod_divide, rem_divide.
Qed.
(** When division is exact, div and quot agree *)
Lemma quot_div_exact : forall a b, b~=0 -> (b|a) -> a÷b == a/b.
Proof.
intros a b Hb H.
apply mul_cancel_l with b; trivial.
assert (H':=H).
apply rem_divide, quot_exact in H; trivial.
apply mod_divide, div_exact in H'; trivial.
now rewrite <-H,<-H'.
Qed.
Lemma divide_div_mul_exact : forall a b c, b~=0 -> (b|a) ->
(c*a)/b == c*(a/b).
Proof.
intros a b c Hb H.
apply mul_cancel_l with b; trivial.
rewrite mul_assoc, mul_shuffle0.
assert (H':=H). apply mod_divide, div_exact in H'; trivial.
rewrite <- H', (mul_comm a c).
symmetry. apply div_exact; trivial.
apply mod_divide; trivial.
now apply divide_mul_r.
Qed.
Lemma divide_quot_mul_exact : forall a b c, b~=0 -> (b|a) ->
(c*a)÷b == c*(a÷b).
Proof.
intros a b c Hb H.
rewrite 2 quot_div_exact; trivial.
- apply divide_div_mul_exact; trivial.
- now apply divide_mul_r.
Qed.
(** Gcd of divided elements, for exact divisions *)
Lemma gcd_div_factor : forall a b c, 0<c -> (c|a) -> (c|b) ->
gcd (a/c) (b/c) == (gcd a b)/c.
Proof.
intros a b c Hc Ha Hb.
apply mul_cancel_l with c; try order.
assert (H:=gcd_greatest _ _ _ Ha Hb).
apply mod_divide, div_exact in H; try order.
rewrite <- H.
rewrite <- gcd_mul_mono_l_nonneg; try order.
f_equiv; symmetry; apply div_exact; try order;
apply mod_divide; trivial; try order.
Qed.
Lemma gcd_quot_factor : forall a b c, 0<c -> (c|a) -> (c|b) ->
gcd (a÷c) (b÷c) == (gcd a b)÷c.
Proof.
intros a b c Hc Ha Hb. rewrite !quot_div_exact; trivial; try order.
- now apply gcd_div_factor.
- now apply gcd_greatest.
Qed.
Lemma gcd_div_gcd : forall a b g, g~=0 -> g == gcd a b ->
gcd (a/g) (b/g) == 1.
Proof.
intros a b g NZ EQ. rewrite gcd_div_factor.
- now rewrite <- EQ, div_same.
- generalize (gcd_nonneg a b); order.
- rewrite EQ; apply gcd_divide_l.
- rewrite EQ; apply gcd_divide_r.
Qed.
Lemma gcd_quot_gcd : forall a b g, g~=0 -> g == gcd a b ->
gcd (a÷g) (b÷g) == 1.
Proof.
intros a b g NZ EQ. rewrite !quot_div_exact; trivial.
- now apply gcd_div_gcd.
- rewrite EQ; apply gcd_divide_r.
- rewrite EQ; apply gcd_divide_l.
Qed.
(** The following equality is crucial for Euclid algorithm *)
Lemma gcd_mod : forall a b, b~=0 -> gcd (a mod b) b == gcd b a.
Proof.
intros a b Hb. rewrite mod_eq; trivial.
rewrite <- add_opp_r, mul_comm, <- mul_opp_l.
rewrite (gcd_comm _ b).
apply gcd_add_mult_diag_r.
Qed.
Lemma gcd_rem : forall a b, b~=0 -> gcd (a rem b) b == gcd b a.
Proof.
intros a b Hb. rewrite rem_eq; trivial.
rewrite <- add_opp_r, mul_comm, <- mul_opp_l.
rewrite (gcd_comm _ b).
apply gcd_add_mult_diag_r.
Qed.
(** We now define lcm thanks to gcd:
lcm a b = a * (b / gcd a b)
= (a / gcd a b) * b
= (a*b) / gcd a b
We had an abs in order to have an always-nonnegative lcm,
in the spirit of gcd. Nota: [lcm 0 0] should be 0, which
isn't guarantee with the third equation above.
*)
Definition lcm a b := abs (a*(b/gcd a b)).
#[global]
Instance lcm_wd : Proper (eq==>eq==>eq) lcm.
Proof. unfold lcm. solve_proper. Qed.
Lemma lcm_equiv1 : forall a b, gcd a b ~= 0 ->
a * (b / gcd a b) == (a*b)/gcd a b.
Proof.
intros a b H. rewrite divide_div_mul_exact; try easy. apply gcd_divide_r.
Qed.
Lemma lcm_equiv2 : forall a b, gcd a b ~= 0 ->
(a / gcd a b) * b == (a*b)/gcd a b.
Proof.
intros a b H. rewrite 2 (mul_comm _ b).
rewrite divide_div_mul_exact; try easy. apply gcd_divide_l.
Qed.
Lemma gcd_div_swap : forall a b,
(a / gcd a b) * b == a * (b / gcd a b).
Proof.
intros a b. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
- apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ, EQ'. now nzsimpl.
- now rewrite lcm_equiv1, <-lcm_equiv2.
Qed.
Lemma divide_lcm_l : forall a b, (a | lcm a b).
Proof.
unfold lcm. intros a b. apply divide_abs_r, divide_factor_l.
Qed.
Lemma divide_lcm_r : forall a b, (b | lcm a b).
Proof.
unfold lcm. intros a b. apply divide_abs_r. rewrite <- gcd_div_swap.
apply divide_factor_r.
Qed.
Lemma divide_div : forall a b c, a~=0 -> (a|b) -> (b|c) -> (b/a|c/a).
Proof.
intros a b c Ha Hb (c',Hc). exists c'.
now rewrite <- divide_div_mul_exact, <- Hc.
Qed.
Lemma lcm_least : forall a b c,
(a | c) -> (b | c) -> (lcm a b | c).
Proof.
intros a b c Ha Hb. unfold lcm. apply divide_abs_l.
destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
- apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ in *. now nzsimpl.
- assert (Ga := gcd_divide_l a b).
assert (Gb := gcd_divide_r a b).
set (g:=gcd a b) in *.
assert (Ha' := divide_div g a c NEQ Ga Ha).
assert (Hb' := divide_div g b c NEQ Gb Hb).
destruct Ha' as (a',Ha'). rewrite Ha', mul_comm in Hb'.
apply gauss in Hb'; [|apply gcd_div_gcd; unfold g; trivial using gcd_comm].
destruct Hb' as (b',Hb').
exists b'.
rewrite mul_shuffle3, <- Hb'.
rewrite (proj2 (div_exact c g NEQ)).
+ rewrite Ha', mul_shuffle3, (mul_comm a a'). f_equiv.
symmetry. apply div_exact; trivial.
apply mod_divide; trivial.
+ apply mod_divide; trivial. transitivity a; trivial.
Qed.
Lemma lcm_nonneg : forall a b, 0 <= lcm a b.
Proof.
intros a b. unfold lcm. apply abs_nonneg.
Qed.
Lemma lcm_comm : forall a b, lcm a b == lcm b a.
Proof.
intros a b. unfold lcm. rewrite (gcd_comm b), (mul_comm b).
now rewrite <- gcd_div_swap.
Qed.
Lemma lcm_divide_iff : forall n m p,
(lcm n m | p) <-> (n | p) /\ (m | p).
Proof.
intros n m p. split;[split|].
- transitivity (lcm n m); trivial using divide_lcm_l.
- transitivity (lcm n m); trivial using divide_lcm_r.
- intros (H,H'). now apply lcm_least.
Qed.
Lemma lcm_unique : forall n m p,
0<=p -> (n|p) -> (m|p) ->
(forall q, (n|q) -> (m|q) -> (p|q)) ->
lcm n m == p.
Proof.
intros n m p Hp Hn Hm H.
apply divide_antisym_nonneg; trivial.
- apply lcm_nonneg.
- now apply lcm_least.
- apply H.
+ apply divide_lcm_l.
+ apply divide_lcm_r.
Qed.
Lemma lcm_unique_alt : forall n m p, 0<=p ->
(forall q, (p|q) <-> (n|q) /\ (m|q)) ->
lcm n m == p.
Proof.
intros n m p Hp H.
apply lcm_unique; trivial.
- apply H, divide_refl.
- apply H, divide_refl.
- intros. apply H. now split.
Qed.
Lemma lcm_assoc : forall n m p, lcm n (lcm m p) == lcm (lcm n m) p.
Proof.
intros. apply lcm_unique_alt; try apply lcm_nonneg.
intros. now rewrite !lcm_divide_iff, and_assoc.
Qed.
Lemma lcm_0_l : forall n, lcm 0 n == 0.
Proof.
intros. apply lcm_unique; trivial.
- order.
- apply divide_refl.
- apply divide_0_r.
Qed.
Lemma lcm_0_r : forall n, lcm n 0 == 0.
Proof.
intros. now rewrite lcm_comm, lcm_0_l.
Qed.
Lemma lcm_1_l_nonneg : forall n, 0<=n -> lcm 1 n == n.
Proof.
intros. apply lcm_unique; trivial using divide_1_l, le_0_1, divide_refl.
Qed.
Lemma lcm_1_r_nonneg : forall n, 0<=n -> lcm n 1 == n.
Proof.
intros. now rewrite lcm_comm, lcm_1_l_nonneg.
Qed.
Lemma lcm_diag_nonneg : forall n, 0<=n -> lcm n n == n.
Proof.
intros. apply lcm_unique; trivial using divide_refl.
Qed.
Lemma lcm_eq_0 : forall n m, lcm n m == 0 <-> n == 0 \/ m == 0.
Proof.
intros. split.
- intros EQ.
apply eq_mul_0.
apply divide_0_l. rewrite <- EQ. apply lcm_least.
+ apply divide_factor_l.
+ apply divide_factor_r.
- destruct 1 as [EQ|EQ]; rewrite EQ.
+ apply lcm_0_l.
+ apply lcm_0_r.
Qed.
Lemma divide_lcm_eq_r : forall n m, 0<=m -> (n|m) -> lcm n m == m.
Proof.
intros n m Hm H. apply lcm_unique_alt; trivial.
intros q. split.
- split; trivial. now transitivity m.
- now destruct 1.
Qed.
Lemma divide_lcm_iff : forall n m, 0<=m -> ((n|m) <-> lcm n m == m).
Proof.
intros n m Hn. split.
- now apply divide_lcm_eq_r.
- intros EQ. rewrite <- EQ. apply divide_lcm_l.
Qed.
Lemma lcm_opp_l : forall n m, lcm (-n) m == lcm n m.
Proof.
intros. apply lcm_unique_alt; try apply lcm_nonneg.
intros. rewrite divide_opp_l. apply lcm_divide_iff.
Qed.
Lemma lcm_opp_r : forall n m, lcm n (-m) == lcm n m.
Proof.
intros. now rewrite lcm_comm, lcm_opp_l, lcm_comm.
Qed.
Lemma lcm_abs_l : forall n m, lcm (abs n) m == lcm n m.
Proof.
intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
- easy.
- apply lcm_opp_l.
Qed.
Lemma lcm_abs_r : forall n m, lcm n (abs m) == lcm n m.
Proof.
intros. now rewrite lcm_comm, lcm_abs_l, lcm_comm.
Qed.
Lemma lcm_1_l : forall n, lcm 1 n == abs n.
Proof.
intros. rewrite <- lcm_abs_r. apply lcm_1_l_nonneg, abs_nonneg.
Qed.
Lemma lcm_1_r : forall n, lcm n 1 == abs n.
Proof.
intros. now rewrite lcm_comm, lcm_1_l.
Qed.
Lemma lcm_diag : forall n, lcm n n == abs n.
Proof.
intros. rewrite <- lcm_abs_l, <- lcm_abs_r.
apply lcm_diag_nonneg, abs_nonneg.
Qed.
Lemma lcm_mul_mono_l :
forall n m p, lcm (p * n) (p * m) == abs p * lcm n m.
Proof.
intros n m p.
destruct (eq_decidable p 0) as [Hp|Hp];[|destruct (eq_decidable (gcd n m) 0) as [Hg|Hg]].
- rewrite Hp. nzsimpl. rewrite lcm_0_l, abs_0. now nzsimpl.
- apply gcd_eq_0 in Hg. destruct Hg as (Hn,Hm); rewrite Hn, Hm.
nzsimpl. rewrite lcm_0_l. now nzsimpl.
- unfold lcm.
rewrite gcd_mul_mono_l.
rewrite !abs_mul, mul_assoc. f_equiv.
rewrite <- (abs_sgn p) at 1. rewrite <- mul_assoc.
rewrite div_mul_cancel_l; trivial.
+ rewrite divide_div_mul_exact; trivial.
* rewrite abs_mul.
rewrite <- (sgn_abs (sgn p)), sgn_sgn.
{ destruct (sgn_spec p) as [(_,EQ)|[(EQ,_)|(_,EQ)]].
- rewrite EQ. now nzsimpl.
- order.
- rewrite EQ. rewrite mul_opp_l, mul_opp_r, opp_involutive. now nzsimpl.
}
* apply gcd_divide_r.
+ contradict Hp. now apply abs_0_iff.
Qed.
Lemma lcm_mul_mono_l_nonneg :
forall n m p, 0<=p -> lcm (p*n) (p*m) == p * lcm n m.
Proof.
intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l.
Qed.
Lemma lcm_mul_mono_r :
forall n m p, lcm (n * p) (m * p) == lcm n m * abs p.
Proof.
intros n m p. now rewrite !(mul_comm _ p), lcm_mul_mono_l, mul_comm.
Qed.
Lemma lcm_mul_mono_r_nonneg :
forall n m p, 0<=p -> lcm (n*p) (m*p) == lcm n m * p.
Proof.
intros n m p ?. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r.
Qed.
Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 ->
(gcd n m == 1 <-> lcm n m == abs (n*m)).
Proof.
intros n m Hn Hm. split; intros H.
- unfold lcm. rewrite H. now rewrite div_1_r.
- unfold lcm in *.
rewrite !abs_mul in H. apply mul_cancel_l in H; [|now rewrite abs_0_iff].
assert (H' := gcd_divide_r n m).
assert (Hg : gcd n m ~= 0) by (red; rewrite gcd_eq_0; destruct 1; order).
apply mod_divide in H'; trivial. apply div_exact in H'; trivial.
assert (m / gcd n m ~=0) by (contradict Hm; rewrite H', Hm; now nzsimpl).
rewrite <- (mul_1_l (abs (_/_))) in H.
rewrite H' in H at 3. rewrite abs_mul in H.
apply mul_cancel_r in H; [|now rewrite abs_0_iff].
rewrite abs_eq in H. { order. } apply gcd_nonneg.
Qed.
End ZLcmProp.
|