1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import ZAxioms ZMulOrder GenericMinMax.
(** * Properties of minimum and maximum specific to integer numbers *)
Module Type ZMaxMinProp (Import Z : ZAxiomsMiniSig').
Include ZMulOrderProp Z.
(** The following results are concrete instances of [max_monotone]
and similar lemmas. *)
(** Succ *)
Lemma succ_max_distr n m : S (max n m) == max (S n) (S m).
Proof.
destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?succ_le_mono.
Qed.
Lemma succ_min_distr n m : S (min n m) == min (S n) (S m).
Proof.
destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?succ_le_mono.
Qed.
(** Pred *)
Lemma pred_max_distr n m : P (max n m) == max (P n) (P m).
Proof.
destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?pred_le_mono.
Qed.
Lemma pred_min_distr n m : P (min n m) == min (P n) (P m).
Proof.
destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?pred_le_mono.
Qed.
(** Add *)
Lemma add_max_distr_l n m p : max (p + n) (p + m) == p + max n m.
Proof.
destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_l.
Qed.
Lemma add_max_distr_r n m p : max (n + p) (m + p) == max n m + p.
Proof.
destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_r.
Qed.
Lemma add_min_distr_l n m p : min (p + n) (p + m) == p + min n m.
Proof.
destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_l.
Qed.
Lemma add_min_distr_r n m p : min (n + p) (m + p) == min n m + p.
Proof.
destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_r.
Qed.
(** Opp *)
Lemma opp_max_distr n m : -(max n m) == min (-n) (-m).
Proof.
destruct (le_ge_cases n m).
- rewrite max_r by trivial. symmetry. apply min_r. now rewrite <- opp_le_mono.
- rewrite max_l by trivial. symmetry. apply min_l. now rewrite <- opp_le_mono.
Qed.
Lemma opp_min_distr n m : -(min n m) == max (-n) (-m).
Proof.
destruct (le_ge_cases n m).
- rewrite min_l by trivial. symmetry. apply max_l. now rewrite <- opp_le_mono.
- rewrite min_r by trivial. symmetry. apply max_r. now rewrite <- opp_le_mono.
Qed.
(** Sub *)
Lemma sub_max_distr_l n m p : max (p - n) (p - m) == p - min n m.
Proof.
destruct (le_ge_cases n m).
- rewrite min_l by trivial. apply max_l. now rewrite <- sub_le_mono_l.
- rewrite min_r by trivial. apply max_r. now rewrite <- sub_le_mono_l.
Qed.
Lemma sub_max_distr_r n m p : max (n - p) (m - p) == max n m - p.
Proof.
destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; try order; now apply sub_le_mono_r.
Qed.
Lemma sub_min_distr_l n m p : min (p - n) (p - m) == p - max n m.
Proof.
destruct (le_ge_cases n m).
- rewrite max_r by trivial. apply min_r. now rewrite <- sub_le_mono_l.
- rewrite max_l by trivial. apply min_l. now rewrite <- sub_le_mono_l.
Qed.
Lemma sub_min_distr_r n m p : min (n - p) (m - p) == min n m - p.
Proof.
destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; try order; now apply sub_le_mono_r.
Qed.
(** Mul *)
Lemma mul_max_distr_nonneg_l n m p : 0 <= p ->
max (p * n) (p * m) == p * max n m.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_l.
Qed.
Lemma mul_max_distr_nonneg_r n m p : 0 <= p ->
max (n * p) (m * p) == max n m * p.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_nonneg_r.
Qed.
Lemma mul_min_distr_nonneg_l n m p : 0 <= p ->
min (p * n) (p * m) == p * min n m.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_l.
Qed.
Lemma mul_min_distr_nonneg_r n m p : 0 <= p ->
min (n * p) (m * p) == min n m * p.
Proof.
intros. destruct (le_ge_cases n m);
[rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_nonneg_r.
Qed.
Lemma mul_max_distr_nonpos_l n m p : p <= 0 ->
max (p * n) (p * m) == p * min n m.
Proof.
intros. destruct (le_ge_cases n m).
- rewrite min_l by trivial. rewrite max_l by now apply mul_le_mono_nonpos_l. reflexivity.
- rewrite min_r by trivial. rewrite max_r by now apply mul_le_mono_nonpos_l. reflexivity.
Qed.
Lemma mul_max_distr_nonpos_r n m p : p <= 0 ->
max (n * p) (m * p) == min n m * p.
Proof.
intros. destruct (le_ge_cases n m).
- rewrite min_l by trivial. rewrite max_l by now apply mul_le_mono_nonpos_r. reflexivity.
- rewrite min_r by trivial. rewrite max_r by now apply mul_le_mono_nonpos_r. reflexivity.
Qed.
Lemma mul_min_distr_nonpos_l n m p : p <= 0 ->
min (p * n) (p * m) == p * max n m.
Proof.
intros. destruct (le_ge_cases n m).
- rewrite max_r by trivial. rewrite min_r by now apply mul_le_mono_nonpos_l. reflexivity.
- rewrite max_l by trivial. rewrite min_l by now apply mul_le_mono_nonpos_l. reflexivity.
Qed.
Lemma mul_min_distr_nonpos_r n m p : p <= 0 ->
min (n * p) (m * p) == max n m * p.
Proof.
intros. destruct (le_ge_cases n m).
- rewrite max_r by trivial. rewrite min_r by now apply mul_le_mono_nonpos_r. reflexivity.
- rewrite max_l by trivial. rewrite min_l by now apply mul_le_mono_nonpos_r. reflexivity.
Qed.
End ZMaxMinProp.
|