1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Properties of [abs] and [sgn] *)
From Stdlib Require Import ZMulOrder.
(** Since we already have [max], we could have defined [abs]. *)
Module GenericAbs (Import Z : ZAxiomsMiniSig')
(Import ZP : ZMulOrderProp Z) <: HasAbs Z.
Definition abs n := max n (-n).
Lemma abs_eq : forall n, 0<=n -> abs n == n.
Proof.
intros. unfold abs. apply max_l.
apply le_trans with 0; auto.
rewrite opp_nonpos_nonneg; auto.
Qed.
Lemma abs_neq : forall n, n<=0 -> abs n == -n.
Proof.
intros. unfold abs. apply max_r.
apply le_trans with 0; auto.
rewrite opp_nonneg_nonpos; auto.
Qed.
End GenericAbs.
(** We can deduce a [sgn] function from a [compare] function *)
Module Type ZDecAxiomsSig := ZAxiomsMiniSig <+ HasCompare.
Module Type ZDecAxiomsSig' := ZAxiomsMiniSig' <+ HasCompare.
Module Type GenericSgn (Import Z : ZDecAxiomsSig')
(Import ZP : ZMulOrderProp Z) <: HasSgn Z.
Definition sgn n :=
match compare 0 n with Eq => 0 | Lt => 1 | Gt => -1 end.
Lemma sgn_null n : n==0 -> sgn n == 0.
Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
Lemma sgn_pos n : 0<n -> sgn n == 1.
Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
Lemma sgn_neg n : n<0 -> sgn n == -1.
Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
End GenericSgn.
(** Derived properties of [abs] and [sgn] *)
Module Type ZSgnAbsProp (Import Z : ZAxiomsSig')
(Import ZP : ZMulOrderProp Z).
Ltac destruct_max n :=
destruct (le_ge_cases 0 n);
[rewrite (abs_eq n) by auto | rewrite (abs_neq n) by auto].
#[global]
Instance abs_wd : Proper (eq==>eq) abs.
Proof.
intros x y EQ. destruct_max x.
- rewrite abs_eq; trivial. now rewrite <- EQ.
- rewrite abs_neq; try order. now rewrite opp_inj_wd.
Qed.
Lemma abs_max : forall n, abs n == max n (-n).
Proof.
intros n. destruct_max n.
- rewrite max_l; auto with relations.
apply le_trans with 0; auto.
rewrite opp_nonpos_nonneg; auto.
- rewrite max_r; auto with relations.
apply le_trans with 0; auto.
rewrite opp_nonneg_nonpos; auto.
Qed.
Lemma abs_neq' : forall n, 0<=-n -> abs n == -n.
Proof.
intros. apply abs_neq. now rewrite <- opp_nonneg_nonpos.
Qed.
Lemma abs_nonneg : forall n, 0 <= abs n.
Proof.
intros n. destruct_max n; auto.
now rewrite opp_nonneg_nonpos.
Qed.
Lemma abs_eq_iff : forall n, abs n == n <-> 0<=n.
Proof.
split; try apply abs_eq. intros EQ.
rewrite <- EQ. apply abs_nonneg.
Qed.
Lemma abs_neq_iff : forall n, abs n == -n <-> n<=0.
Proof.
split; try apply abs_neq. intros EQ.
rewrite <- opp_nonneg_nonpos, <- EQ. apply abs_nonneg.
Qed.
Lemma abs_opp : forall n, abs (-n) == abs n.
Proof.
intros n. destruct_max n.
- rewrite (abs_neq (-n)), opp_involutive.
+ reflexivity.
+ now rewrite opp_nonpos_nonneg.
- rewrite (abs_eq (-n)).
+ reflexivity.
+ now rewrite opp_nonneg_nonpos.
Qed.
Lemma abs_0 : abs 0 == 0.
Proof.
apply abs_eq. apply le_refl.
Qed.
Lemma abs_0_iff : forall n, abs n == 0 <-> n==0.
Proof.
intros n; split.
- destruct_max n; auto.
now rewrite eq_opp_l, opp_0.
- intros EQ; rewrite EQ. rewrite abs_eq; auto using eq_refl, le_refl.
Qed.
Lemma abs_pos : forall n, 0 < abs n <-> n~=0.
Proof.
intros n. rewrite <- abs_0_iff. split; [intros LT| intros NEQ].
- intro EQ. rewrite EQ in LT. now elim (lt_irrefl 0).
- assert (LE : 0 <= abs n) by apply abs_nonneg.
rewrite lt_eq_cases in LE; destruct LE; auto.
elim NEQ; auto with relations.
Qed.
Lemma abs_eq_or_opp : forall n, abs n == n \/ abs n == -n.
Proof.
intros n. destruct_max n; auto with relations.
Qed.
Lemma abs_or_opp_abs : forall n, n == abs n \/ n == - abs n.
Proof.
intros n. destruct_max n; rewrite ? opp_involutive; auto with relations.
Qed.
Lemma abs_idemp : forall n, abs (abs n) == abs n.
Proof.
intros. apply abs_eq. apply abs_nonneg.
Qed.
#[deprecated(since="8.19", note="Use abs_idemp")]
Notation abs_involutive := abs_idemp.
Lemma abs_spec : forall n,
(0 <= n /\ abs n == n) \/ (n < 0 /\ abs n == -n).
Proof.
intros n. destruct (le_gt_cases 0 n).
- left; split; auto. now apply abs_eq.
- right; split; auto. apply abs_neq. now apply lt_le_incl.
Qed.
Lemma abs_case_strong :
forall (P:t->Prop) n, Proper (eq==>iff) P ->
(0<=n -> P n) -> (n<=0 -> P (-n)) -> P (abs n).
Proof.
intros P n **. destruct_max n; auto.
Qed.
Lemma abs_case : forall (P:t->Prop) n, Proper (eq==>iff) P ->
P n -> P (-n) -> P (abs n).
Proof. intros. now apply abs_case_strong. Qed.
Lemma abs_eq_cases : forall n m, abs n == abs m -> n == m \/ n == - m.
Proof.
intros n m EQ. destruct (abs_or_opp_abs n) as [EQn|EQn].
- rewrite EQn, EQ. apply abs_eq_or_opp.
- rewrite EQn, EQ, opp_inj_wd, eq_opp_l, or_comm. apply abs_eq_or_opp.
Qed.
Lemma abs_lt : forall a b, abs a < b <-> -b < a < b.
Proof.
intros a b.
destruct (abs_spec a) as [[LE EQ]|[LT EQ]]; rewrite EQ; clear EQ.
- split; try split; try destruct 1; try order.
apply lt_le_trans with 0; trivial. apply opp_neg_pos; order.
- rewrite opp_lt_mono, opp_involutive.
split; try split; try destruct 1; try order.
apply lt_le_trans with 0; trivial. apply opp_nonpos_nonneg; order.
Qed.
Lemma abs_le : forall a b, abs a <= b <-> -b <= a <= b.
Proof.
intros a b.
destruct (abs_spec a) as [[LE EQ]|[LT EQ]]; rewrite EQ; clear EQ.
- split; try split; try destruct 1; try order.
apply le_trans with 0; trivial. apply opp_nonpos_nonneg; order.
- rewrite opp_le_mono, opp_involutive.
split; try split; try destruct 1; try order.
apply le_trans with 0.
+ order.
+ apply opp_nonpos_nonneg; order.
Qed.
(** Triangular inequality *)
Lemma abs_triangle : forall n m, abs (n + m) <= abs n + abs m.
Proof.
intros n m. destruct_max n; destruct_max m.
- rewrite abs_eq. { apply le_refl. } now apply add_nonneg_nonneg.
- destruct_max (n+m); try rewrite opp_add_distr;
apply add_le_mono_l || apply add_le_mono_r.
+ apply le_trans with 0; auto. now rewrite opp_nonneg_nonpos.
+ apply le_trans with 0; auto. now rewrite opp_nonpos_nonneg.
- destruct_max (n+m); try rewrite opp_add_distr;
apply add_le_mono_l || apply add_le_mono_r.
+ apply le_trans with 0; auto. now rewrite opp_nonneg_nonpos.
+ apply le_trans with 0; auto. now rewrite opp_nonpos_nonneg.
- rewrite abs_neq, opp_add_distr. { apply le_refl. }
now apply add_nonpos_nonpos.
Qed.
Lemma abs_sub_triangle : forall n m, abs n - abs m <= abs (n-m).
Proof.
intros n m.
rewrite le_sub_le_add_l, add_comm.
rewrite <- (sub_simpl_r n m) at 1.
apply abs_triangle.
Qed.
(** Absolute value and multiplication *)
Lemma abs_mul : forall n m, abs (n * m) == abs n * abs m.
Proof.
assert (H : forall n m, 0<=n -> abs (n*m) == n * abs m).
{ intros n m ?. destruct_max m.
- rewrite abs_eq. { apply eq_refl. } now apply mul_nonneg_nonneg.
- rewrite abs_neq, mul_opp_r. { reflexivity. } now apply mul_nonneg_nonpos .
}
intros n m. destruct_max n.
- now apply H.
- rewrite <- mul_opp_opp, H, abs_opp. { reflexivity. }
now apply opp_nonneg_nonpos.
Qed.
Lemma abs_square : forall n, abs n * abs n == n * n.
Proof.
intros. rewrite <- abs_mul. apply abs_eq. apply le_0_square.
Qed.
(** Some results about the sign function. *)
Ltac destruct_sgn n :=
let LT := fresh "LT" in
let EQ := fresh "EQ" in
let GT := fresh "GT" in
destruct (lt_trichotomy 0 n) as [LT|[EQ|GT]];
[rewrite (sgn_pos n) by auto|
rewrite (sgn_null n) by auto with relations|
rewrite (sgn_neg n) by auto].
#[global]
Instance sgn_wd : Proper (eq==>eq) sgn.
Proof.
intros x y Hxy. destruct_sgn x.
- rewrite sgn_pos; auto with relations. rewrite <- Hxy; auto.
- rewrite sgn_null; auto with relations. rewrite <- Hxy; auto with relations.
- rewrite sgn_neg; auto with relations. rewrite <- Hxy; auto.
Qed.
Lemma sgn_spec : forall n,
0 < n /\ sgn n == 1 \/
0 == n /\ sgn n == 0 \/
0 > n /\ sgn n == -1.
Proof.
intros n.
destruct_sgn n; [left|right;left|right;right]; auto with relations.
Qed.
Lemma sgn_0 : sgn 0 == 0.
Proof.
now apply sgn_null.
Qed.
Lemma sgn_pos_iff : forall n, sgn n == 1 <-> 0<n.
Proof.
intros n; split; try apply sgn_pos. destruct_sgn n; auto.
- intros. elim (lt_neq 0 1); auto. apply lt_0_1.
- intros. elim (lt_neq (-1) 1); auto.
apply lt_trans with 0.
+ rewrite opp_neg_pos. apply lt_0_1.
+ apply lt_0_1.
Qed.
Lemma sgn_null_iff : forall n, sgn n == 0 <-> n==0.
Proof.
intros n; split; try apply sgn_null. destruct_sgn n; auto with relations.
- intros. elim (lt_neq 0 1); auto with relations. apply lt_0_1.
- intros. elim (lt_neq (-1) 0); auto.
rewrite opp_neg_pos. apply lt_0_1.
Qed.
Lemma sgn_neg_iff : forall n, sgn n == -1 <-> n<0.
Proof.
intros n; split; try apply sgn_neg. destruct_sgn n; auto with relations.
- intros. elim (lt_neq (-1) 1); auto with relations.
apply lt_trans with 0.
+ rewrite opp_neg_pos. apply lt_0_1.
+ apply lt_0_1.
- intros. elim (lt_neq (-1) 0); auto with relations.
rewrite opp_neg_pos. apply lt_0_1.
Qed.
Lemma sgn_opp : forall n, sgn (-n) == - sgn n.
Proof.
intros n. destruct_sgn n.
- apply sgn_neg. now rewrite opp_neg_pos.
- setoid_replace n with 0 by auto with relations.
rewrite opp_0. apply sgn_0.
- rewrite opp_involutive. apply sgn_pos. now rewrite opp_pos_neg.
Qed.
Lemma sgn_nonneg : forall n, 0 <= sgn n <-> 0 <= n.
Proof.
intros n; split.
- destruct_sgn n; intros.
+ now apply lt_le_incl.
+ order.
+ elim (lt_irrefl 0). apply lt_le_trans with 1; auto using lt_0_1.
now rewrite <- opp_nonneg_nonpos.
- rewrite lt_eq_cases; destruct 1.
+ rewrite sgn_pos by auto. apply lt_le_incl, lt_0_1.
+ rewrite sgn_null by auto with relations. apply le_refl.
Qed.
Lemma sgn_nonpos : forall n, sgn n <= 0 <-> n <= 0.
Proof.
intros. rewrite <- 2 opp_nonneg_nonpos, <- sgn_opp. apply sgn_nonneg.
Qed.
Lemma sgn_mul : forall n m, sgn (n*m) == sgn n * sgn m.
Proof.
intros n m. destruct_sgn n; nzsimpl.
- destruct_sgn m.
+ apply sgn_pos. now apply mul_pos_pos.
+ apply sgn_null. rewrite eq_mul_0; auto with relations.
+ apply sgn_neg. now apply mul_pos_neg.
- apply sgn_null. rewrite eq_mul_0; auto with relations.
- destruct_sgn m; try rewrite mul_opp_opp; nzsimpl.
+ apply sgn_neg. now apply mul_neg_pos.
+ apply sgn_null. rewrite eq_mul_0; auto with relations.
+ apply sgn_pos. now apply mul_neg_neg.
Qed.
Lemma sgn_abs : forall n, n * sgn n == abs n.
Proof.
intros n. symmetry.
destruct_sgn n; try rewrite mul_opp_r; nzsimpl.
- apply abs_eq. now apply lt_le_incl.
- rewrite abs_0_iff; auto with relations.
- apply abs_neq. now apply lt_le_incl.
Qed.
Lemma abs_sgn : forall n, abs n * sgn n == n.
Proof.
intros n.
destruct_sgn n; try rewrite mul_opp_r; nzsimpl; auto.
- apply abs_eq. now apply lt_le_incl.
- rewrite eq_opp_l. apply abs_neq. now apply lt_le_incl.
Qed.
Lemma sgn_sgn : forall x, sgn (sgn x) == sgn x.
Proof.
intros x.
destruct (sgn_spec x) as [(LT,EQ)|[(EQ',EQ)|(LT,EQ)]]; rewrite EQ.
- apply sgn_pos, lt_0_1.
- now apply sgn_null.
- apply sgn_neg. rewrite opp_neg_pos. apply lt_0_1.
Qed.
End ZSgnAbsProp.
|