1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Properties of the greatest common divisor *)
From Stdlib Require Import NAxioms NSub NZGcd.
Module Type NGcdProp
(Import A : NAxiomsSig')
(Import B : NSubProp A).
Module Import Private_NZGcdProp := NZGcdProp A A B.
(** Properties of divide *)
#[global] Instance divide_wd : Proper (eq==>eq==>iff) divide := divide_wd.
Definition divide_1_r n := divide_1_r_nonneg n (le_0_l n).
Definition divide_1_l := divide_1_l.
Definition divide_0_r := divide_0_r.
Definition divide_0_l := divide_0_l.
Definition divide_refl := divide_refl.
Definition divide_trans := divide_trans.
#[global] Instance divide_reflexive : Reflexive divide | 5 := divide_refl.
#[global] Instance divide_transitive : Transitive divide | 5 := divide_trans.
Definition divide_antisym n m := divide_antisym_nonneg n m (le_0_l n) (le_0_l m).
Definition mul_divide_mono_l := mul_divide_mono_l.
Definition mul_divide_mono_r := mul_divide_mono_r.
Definition mul_divide_cancel_l := mul_divide_cancel_l.
Definition mul_divide_cancel_r := mul_divide_cancel_r.
Definition divide_add_r := divide_add_r.
Definition divide_mul_l := divide_mul_l.
Definition divide_mul_r := divide_mul_r.
Definition divide_factor_l := divide_factor_l.
Definition divide_factor_r := divide_factor_r.
Definition divide_pos_le := divide_pos_le.
(** Properties of gcd *)
Definition gcd_0_l n : gcd 0 n == n := gcd_0_l_nonneg n (le_0_l n).
Definition gcd_0_r n : gcd n 0 == n := gcd_0_r_nonneg n (le_0_l n).
Definition gcd_diag n : gcd n n == n := gcd_diag_nonneg n (le_0_l n).
Definition gcd_unique n m p := gcd_unique n m p (le_0_l p).
Definition gcd_unique_alt n m p := gcd_unique_alt n m p (le_0_l p).
Definition divide_gcd_iff n m := divide_gcd_iff n m (le_0_l n).
#[global] Instance gcd_wd : Proper (eq==>eq==>eq) gcd := gcd_wd.
Definition gcd_comm := gcd_comm.
Definition gcd_assoc := gcd_assoc.
Definition gcd_eq_0_l := gcd_eq_0_l.
Definition gcd_eq_0_r := gcd_eq_0_r.
Definition gcd_eq_0 := gcd_eq_0.
Definition gcd_mul_diag_l n m := gcd_mul_diag_l n m (le_0_l n).
#[deprecated(since="8.17",note="Use divide_antisym instead.")]
Notation divide_antisym_nonneg := divide_antisym_nonneg (only parsing).
#[deprecated(since="8.17",note="Use gcd_unique instead.")]
Notation gcd_unique' n m p := gcd_unique (only parsing).
#[deprecated(since="8.17",note="Use gcd_unique_alt instead.")]
Notation gcd_unique_alt' := gcd_unique_alt.
#[deprecated(since="8.17",note="Use divide_gcd_iff instead.")]
Notation divide_gcd_iff' := divide_gcd_iff.
Lemma divide_add_cancel_r : forall n m p, (n | m) -> (n | m + p) -> (n | p).
Proof.
intros n m p (q,Hq) (r,Hr).
exists (r-q). rewrite mul_sub_distr_r, <- Hq, <- Hr.
now rewrite add_comm, add_sub.
Qed.
Lemma divide_sub_r : forall n m p, (n | m) -> (n | p) -> (n | m - p).
Proof.
intros n m p H H'.
destruct (le_ge_cases m p) as [LE|LE].
- apply sub_0_le in LE. rewrite LE. apply divide_0_r.
- apply divide_add_cancel_r with p; trivial.
now rewrite add_comm, sub_add.
Qed.
Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m.
Proof.
intros n m p. apply gcd_unique_alt.
intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial.
- apply divide_add_r; trivial. now apply divide_mul_r.
- apply divide_add_cancel_r with (p*n); trivial.
+ now apply divide_mul_r.
+ now rewrite add_comm.
Qed.
Lemma gcd_add_diag_r : forall n m, gcd n (m+n) == gcd n m.
Proof.
intros n m. rewrite <- (mul_1_l n) at 2. apply gcd_add_mult_diag_r.
Qed.
Lemma gcd_sub_diag_r : forall n m, n<=m -> gcd n (m-n) == gcd n m.
Proof.
intros n m H. symmetry.
rewrite <- (sub_add n m H) at 1. apply gcd_add_diag_r.
Qed.
(** On natural numbers, we should use a particular form
for the Bezout identity, since we don't have full subtraction. *)
Definition Bezout n m p := exists a b, a*n == p + b*m.
#[global]
Instance Bezout_wd : Proper (eq==>eq==>eq==>iff) Bezout.
Proof.
unfold Bezout. intros x x' Hx y y' Hy z z' Hz.
setoid_rewrite Hx. setoid_rewrite Hy. now setoid_rewrite Hz.
Qed.
Lemma bezout_1_gcd : forall n m, Bezout n m 1 -> gcd n m == 1.
Proof.
intros n m (q & r & H).
apply gcd_unique; trivial using divide_1_l, le_0_1.
intros p Hn Hm.
apply divide_add_cancel_r with (r*m).
- now apply divide_mul_r.
- rewrite add_comm, <- H. now apply divide_mul_r.
Qed.
(** Bezout on natural numbers commutes *)
Theorem bezout_comm : forall a b g,
b ~= 0 -> Bezout a b g -> Bezout b a g.
Proof.
intros a b g Hb [p [q Hpq]].
destruct (eq_decidable a 0) as [Ha|Ha].
{ exists 0, 0. symmetry in Hpq.
rewrite Ha, mul_0_r in Hpq.
apply eq_add_0 in Hpq as [-> _].
now nzsimpl. }
exists (a*(p+1)*(q+1)-q), (b*(p+1)*(q+1)-p).
enough (E' : (a*(p+1)*(q+1)-q+q)*b == (b*(p+1)*(q+1)-p+p)*a).
{ rewrite (mul_add_distr_r _ _ a), (mul_add_distr_r _ _ b), Hpq in E'.
rewrite add_assoc, (add_comm _ g) in E'.
now apply add_cancel_r in E'. }
rewrite !sub_add.
- now rewrite !(mul_comm _ b), !mul_assoc, !(mul_comm _ a), !mul_assoc.
- rewrite <- mul_1_r at 1. apply mul_le_mono; [|apply le_add_l].
rewrite <- mul_1_l at 1. apply mul_le_mono; [|apply le_add_r].
rewrite one_succ. apply le_succ_l. assert (H := le_0_l b). order.
- rewrite <- mul_1_l at 1. apply mul_le_mono; [|apply le_add_r].
rewrite <- mul_1_l at 1. apply mul_le_mono; [|apply le_add_l].
rewrite one_succ. apply le_succ_l. assert (H := le_0_l a). order.
Qed.
Lemma gcd_bezout_pos : forall n m, 0 < n -> Bezout n m (gcd n m).
Proof.
enough (H : forall nm, 0 < fst nm -> Bezout (fst nm) (snd nm) (gcd (fst nm) (snd nm))).
{ intros n m. apply (H (n, m)). }
intros nm.
induction nm as [[n m] IH] using (measure_induction _ (fun '(n, m) => n + m)).
enough (H : forall n' m', n+m == n'+m' -> 0<n'<m' -> Bezout n' m' (gcd n' m')).
{ cbn. intros ?. destruct (lt_trichotomy n m) as [Hnm|[Hnm|Hnm]].
- now apply H.
- exists 1, 0. now rewrite Hnm, mul_1_l, mul_0_l, add_0_r, gcd_diag.
- destruct (eq_0_gt_0_cases m) as [->|?].
+ exists 1, 0. now rewrite gcd_0_r, mul_1_l, mul_0_l, add_0_r.
+ apply bezout_comm; [order|].
rewrite gcd_comm. now apply H; [apply add_comm|]. }
intros n' m' E' [Hn' Hn'm'].
assert (Hlt : n' + (m' - n') < n + m).
{ rewrite (add_comm n'), E', sub_add by order.
now apply lt_add_pos_l. }
destruct (IH (n', m'-n') Hlt Hn') as [a [b Hab]].
cbn in Hab. exists (a+b), b.
rewrite mul_add_distr_r, Hab, mul_sub_distr_l, gcd_sub_diag_r by order.
now rewrite <- add_assoc, sub_add by (apply mul_le_mono_l; order).
Qed.
(** For strictly positive numbers, we have Bezout in the two directions. *)
Lemma gcd_bezout_pos_pos : forall n, 0<n -> forall m, 0<m ->
Bezout n m (gcd n m) /\ Bezout m n (gcd n m).
Proof.
intros ????. split; [|rewrite gcd_comm]; now apply gcd_bezout_pos.
Qed.
(** For arbitrary natural numbers, we could only say that at least
one of the Bezout identities holds. *)
Lemma gcd_bezout : forall n m,
Bezout n m (gcd n m) \/ Bezout m n (gcd n m).
Proof.
intros n m.
destruct (eq_0_gt_0_cases n) as [EQ|LT].
- right. rewrite EQ, gcd_0_l. exists 1. exists 0. now nzsimpl.
- left. now apply gcd_bezout_pos.
Qed.
Lemma gcd_mul_mono_l :
forall n m p, gcd (p * n) (p * m) == p * gcd n m.
Proof.
intros n m p. apply gcd_unique.
- apply mul_divide_mono_l, gcd_divide_l.
- apply mul_divide_mono_l, gcd_divide_r.
- intros q H H'.
destruct (eq_0_gt_0_cases n) as [EQ|LT].
+ rewrite EQ in *. now rewrite gcd_0_l.
+ destruct (gcd_bezout_pos n m) as (a & b & EQ); trivial.
apply divide_add_cancel_r with (p*m*b).
* now apply divide_mul_l.
* rewrite <- mul_assoc, <- mul_add_distr_l, add_comm, (mul_comm m), <- EQ.
rewrite (mul_comm a), mul_assoc.
now apply divide_mul_l.
Qed.
Lemma gcd_mul_mono_r :
forall n m p, gcd (n*p) (m*p) == gcd n m * p.
Proof.
intros n m p. rewrite !(mul_comm _ p). apply gcd_mul_mono_l.
Qed.
Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p).
Proof.
intros n m p H G.
destruct (eq_0_gt_0_cases n) as [EQ|LT].
- rewrite EQ in *. rewrite gcd_0_l in G. now rewrite <- (mul_1_l p), <- G.
- destruct (gcd_bezout_pos n m) as (a & b & EQ); trivial.
rewrite G in EQ.
apply divide_add_cancel_r with (m*p*b).
+ now apply divide_mul_l.
+ rewrite (mul_comm _ b), mul_assoc. rewrite <- (mul_1_l p) at 2.
rewrite <- mul_add_distr_r, add_comm, <- EQ.
now apply divide_mul_l, divide_factor_r.
Qed.
Lemma divide_mul_split : forall n m p, n ~= 0 -> (n | m * p) ->
exists q r, n == q*r /\ (q | m) /\ (r | p).
Proof.
intros n m p Hn H.
assert (G := gcd_nonneg n m). le_elim G.
- destruct (gcd_divide_l n m) as (q,Hq).
exists (gcd n m). exists q.
split.
+ now rewrite mul_comm.
+ split.
* apply gcd_divide_r.
* destruct (gcd_divide_r n m) as (r,Hr).
rewrite Hr in H. rewrite Hq in H at 1.
rewrite mul_shuffle0 in H. apply mul_divide_cancel_r in H; [|order].
apply gauss with r; trivial.
apply mul_cancel_r with (gcd n m); [order|].
rewrite mul_1_l.
rewrite <- gcd_mul_mono_r, <- Hq, <- Hr; order.
- symmetry in G. apply gcd_eq_0 in G. destruct G as (Hn',_); order.
Qed.
(** TODO : relation between gcd and division and modulo *)
(** TODO : more about rel_prime (i.e. gcd == 1), about prime ... *)
End NGcdProp.
|