1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
(** This file defined the strong (course-of-value, well-founded) recursion
and proves its properties *)
From Stdlib Require Export NSub.
Ltac f_equiv' := repeat (repeat f_equiv; try intros ? ? ?; auto).
Module NStrongRecProp (Import N : NAxiomsRecSig').
Include NSubProp N.
Section StrongRecursion.
Variable A : Type.
Variable Aeq : relation A.
Variable Aeq_equiv : Equivalence Aeq.
(** [strong_rec] allows defining a recursive function [phi] given by
an equation [phi(n) = F(phi)(n)] where recursive calls to [phi]
in [F] are made on strictly lower numbers than [n].
For [strong_rec a F n]:
- Parameter [a:A] is a default value used internally, it has no
effect on the final result.
- Parameter [F:(N->A)->N->A] is the step function:
[F f n] should return [phi(n)] when [f] is a function
that coincide with [phi] for numbers strictly less than [n].
*)
Definition strong_rec (a : A) (f : (N.t -> A) -> N.t -> A) (n : N.t) : A :=
recursion (fun _ => a) (fun _ => f) (S n) n.
(** For convenience, we use in proofs an intermediate definition
between [recursion] and [strong_rec]. *)
Definition strong_rec0 (a : A) (f : (N.t -> A) -> N.t -> A) : N.t -> N.t -> A :=
recursion (fun _ => a) (fun _ => f).
Lemma strong_rec_alt : forall a f n,
strong_rec a f n = strong_rec0 a f (S n) n.
Proof.
reflexivity.
Qed.
Instance strong_rec0_wd :
Proper (Aeq ==> ((N.eq ==> Aeq) ==> N.eq ==> Aeq) ==> N.eq ==> N.eq ==> Aeq)
strong_rec0.
Proof.
unfold strong_rec0; f_equiv'.
Qed.
Instance strong_rec_wd :
Proper (Aeq ==> ((N.eq ==> Aeq) ==> N.eq ==> Aeq) ==> N.eq ==> Aeq) strong_rec.
Proof.
intros a a' Eaa' f f' Eff' n n' Enn'.
rewrite !strong_rec_alt; f_equiv'.
Qed.
Section FixPoint.
Variable f : (N.t -> A) -> N.t -> A.
Variable f_wd : Proper ((N.eq==>Aeq)==>N.eq==>Aeq) f.
Lemma strong_rec0_0 : forall a m,
(strong_rec0 a f 0 m) = a.
Proof.
intros. unfold strong_rec0. rewrite recursion_0; auto.
Qed.
Lemma strong_rec0_succ : forall a n m,
Aeq (strong_rec0 a f (S n) m) (f (strong_rec0 a f n) m).
Proof.
intros. unfold strong_rec0.
f_equiv.
rewrite recursion_succ; f_equiv'.
Qed.
Lemma strong_rec_0 : forall a,
Aeq (strong_rec a f 0) (f (fun _ => a) 0).
Proof.
intros. rewrite strong_rec_alt, strong_rec0_succ; f_equiv'.
rewrite strong_rec0_0. reflexivity.
Qed.
(* We need an assumption saying that for every n, the step function (f h n)
calls h only on the segment [0 ... n - 1]. This means that if h1 and h2
coincide on values < n, then (f h1 n) coincides with (f h2 n) *)
Hypothesis step_good :
forall (n : N.t) (h1 h2 : N.t -> A),
(forall m : N.t, m < n -> Aeq (h1 m) (h2 m)) -> Aeq (f h1 n) (f h2 n).
Lemma strong_rec0_more_steps : forall a k n m, m < n ->
Aeq (strong_rec0 a f n m) (strong_rec0 a f (n+k) m).
Proof.
intros a k n. pattern n.
apply induction; clear n.
- intros n n' Hn; setoid_rewrite Hn; auto with *.
- intros m Hm. destruct (nlt_0_r _ Hm).
- intros n IH m Hm.
rewrite lt_succ_r in Hm.
rewrite add_succ_l.
rewrite 2 strong_rec0_succ.
apply step_good.
intros m' Hm'.
apply IH.
apply lt_le_trans with m; auto.
Qed.
Lemma strong_rec0_fixpoint : forall (a : A) (n : N.t),
Aeq (strong_rec0 a f (S n) n) (f (fun n => strong_rec0 a f (S n) n) n).
Proof.
intros.
rewrite strong_rec0_succ.
apply step_good.
intros m Hm.
symmetry.
setoid_replace n with (S m + (n - S m)).
- apply strong_rec0_more_steps.
apply lt_succ_diag_r.
- rewrite add_comm.
symmetry.
apply sub_add.
rewrite le_succ_l; auto.
Qed.
Theorem strong_rec_fixpoint : forall (a : A) (n : N.t),
Aeq (strong_rec a f n) (f (strong_rec a f) n).
Proof.
intros.
transitivity (f (fun n => strong_rec0 a f (S n) n) n).
- rewrite strong_rec_alt.
apply strong_rec0_fixpoint.
- f_equiv.
intros x x' Hx; rewrite strong_rec_alt, Hx; auto with *.
Qed.
(** NB: without the [step_good] hypothesis, we have proved that
[strong_rec a f 0] is [f (fun _ => a) 0]. Now we can prove
that the first argument of [f] is arbitrary in this case...
*)
Theorem strong_rec_0_any : forall (a : A)(any : N.t->A),
Aeq (strong_rec a f 0) (f any 0).
Proof.
intros.
rewrite strong_rec_fixpoint.
apply step_good.
intros m Hm. destruct (nlt_0_r _ Hm).
Qed.
(** ... and that first argument of [strong_rec] is always arbitrary. *)
Lemma strong_rec_any_fst_arg : forall a a' n,
Aeq (strong_rec a f n) (strong_rec a' f n).
Proof.
intros a a' n.
generalize (le_refl n).
set (k:=n) at -2. clearbody k. revert k. pattern n.
apply induction; clear n.
- (* compat *)
intros n n' Hn. setoid_rewrite Hn; auto with *.
- (* 0 *)
intros k Hk. rewrite le_0_r in Hk.
rewrite Hk, strong_rec_0. symmetry. apply strong_rec_0_any.
- (* S *)
intros n IH k Hk.
rewrite 2 strong_rec_fixpoint.
apply step_good.
intros m Hm.
apply IH.
rewrite succ_le_mono.
apply le_trans with k; auto.
rewrite le_succ_l; auto.
Qed.
End FixPoint.
End StrongRecursion.
Arguments strong_rec [A] a f n.
End NStrongRecProp.
|