1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
From Stdlib Require Export NMulOrder.
Module Type NSubProp (Import N : NAxiomsMiniSig').
Include NMulOrderProp N.
Theorem sub_0_l : forall n, 0 - n == 0.
Proof.
intro n; induct n.
- apply sub_0_r.
- intros n IH; rewrite sub_succ_r; rewrite IH. now apply pred_0.
Qed.
Theorem sub_succ : forall n m, S n - S m == n - m.
Proof.
intros n m; induct m.
- rewrite sub_succ_r. do 2 rewrite sub_0_r. now rewrite pred_succ.
- intros m IH. rewrite sub_succ_r. rewrite IH. now rewrite sub_succ_r.
Qed.
Theorem sub_diag : forall n, n - n == 0.
Proof.
intro n; induct n.
- apply sub_0_r.
- intros n IH; rewrite sub_succ; now rewrite IH.
Qed.
Theorem sub_gt : forall n m, n > m -> n - m ~= 0.
Proof.
intros n m H; elim H using lt_ind_rel; clear n m H.
- solve_proper.
- intro; rewrite sub_0_r; apply neq_succ_0.
- intros; now rewrite sub_succ.
Qed.
Theorem add_sub_assoc : forall n m p, p <= m -> n + (m - p) == (n + m) - p.
Proof.
intros n m p; induct p.
- intro; now do 2 rewrite sub_0_r.
- intros p IH H. do 2 rewrite sub_succ_r.
rewrite <- IH by (apply lt_le_incl; now apply le_succ_l).
rewrite add_pred_r by (apply sub_gt; now apply le_succ_l).
reflexivity.
Qed.
Theorem sub_succ_l : forall n m, n <= m -> S m - n == S (m - n).
Proof.
intros n m H. rewrite <- (add_1_l m). rewrite <- (add_1_l (m - n)).
symmetry; now apply add_sub_assoc.
Qed.
Theorem add_sub : forall n m, (n + m) - m == n.
Proof.
intros n m. rewrite <- add_sub_assoc by (apply le_refl).
rewrite sub_diag; now rewrite add_0_r.
Qed.
Theorem sub_add : forall n m, n <= m -> (m - n) + n == m.
Proof.
intros n m H. rewrite add_comm. rewrite add_sub_assoc by assumption.
rewrite add_comm. apply add_sub.
Qed.
Theorem add_sub_eq_l : forall n m p, m + p == n -> n - m == p.
Proof.
intros n m p H. symmetry.
assert (H1 : m + p - m == n - m) by now rewrite H.
rewrite add_comm in H1. now rewrite add_sub in H1.
Qed.
Theorem add_sub_eq_r : forall n m p, m + p == n -> n - p == m.
Proof.
intros n m p H; rewrite add_comm in H; now apply add_sub_eq_l.
Qed.
(* This could be proved by adding m to both sides. Then the proof would
use add_sub_assoc and sub_0_le, which is proven below. *)
Theorem add_sub_eq_nz : forall n m p, p ~= 0 -> n - m == p -> m + p == n.
Proof.
intros n m p H; double_induct n m.
- intros m H1; rewrite sub_0_l in H1. symmetry in H1; false_hyp H1 H.
- intro n; rewrite sub_0_r; now rewrite add_0_l.
- intros n m IH H1. rewrite sub_succ in H1. apply IH in H1.
rewrite add_succ_l; now rewrite H1.
Qed.
Theorem sub_add_distr : forall n m p, n - (m + p) == (n - m) - p.
Proof.
intros n m p; induct p.
- rewrite add_0_r; now rewrite sub_0_r.
- intros p IH. rewrite add_succ_r; do 2 rewrite sub_succ_r. now rewrite IH.
Qed.
Theorem add_sub_swap : forall n m p, p <= n -> n + m - p == n - p + m.
Proof.
intros n m p H.
rewrite (add_comm n m).
rewrite <- add_sub_assoc by assumption.
now rewrite (add_comm m (n - p)).
Qed.
(** Sub and order *)
Theorem le_sub_l : forall n m, n - m <= n.
Proof.
intros n m; induct m.
- rewrite sub_0_r; now apply eq_le_incl.
- intros m IH. rewrite sub_succ_r.
apply le_trans with (n - m); [apply le_pred_l | assumption].
Qed.
Theorem sub_0_le : forall n m, n - m == 0 <-> n <= m.
Proof.
intros n m; double_induct n m.
- intro m; split; intro; [apply le_0_l | apply sub_0_l].
- intro m; rewrite sub_0_r; split; intro H;
[false_hyp H neq_succ_0 | false_hyp H nle_succ_0].
- intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ.
Qed.
Theorem sub_pred_l : forall n m, P n - m == P (n - m).
Proof.
intros n m; destruct (zero_or_succ n) as [-> | [k ->]].
- rewrite pred_0, sub_0_l, pred_0; reflexivity.
- rewrite pred_succ; destruct (lt_ge_cases k m) as [H | H].
+ pose proof H as H'. apply lt_le_incl in H' as ->%sub_0_le.
apply le_succ_l, sub_0_le in H as ->; rewrite pred_0; reflexivity.
+ rewrite sub_succ_l, pred_succ by (exact H); reflexivity.
Qed.
Theorem sub_pred_r : forall n m, m ~= 0 -> m <= n -> n - P m == S (n - m).
Proof.
intros n m H H'; destruct (zero_or_succ m) as [[]%H | [k Hk]]; rewrite Hk in *.
rewrite pred_succ, sub_succ_r, succ_pred; [reflexivity |].
apply sub_gt, le_succ_l; exact H'.
Qed.
Theorem sub_add_le : forall n m, n <= n - m + m.
Proof.
intros n m.
destruct (le_ge_cases n m) as [LE|GE].
- rewrite <- sub_0_le in LE. rewrite LE; nzsimpl.
now rewrite <- sub_0_le.
- rewrite sub_add by assumption. apply le_refl.
Qed.
Theorem le_sub_le_add_r : forall n m p,
n - p <= m <-> n <= m + p.
Proof.
intros n m p.
split; intros LE.
- rewrite (add_le_mono_r _ _ p) in LE.
apply le_trans with (n-p+p); auto using sub_add_le.
- destruct (le_ge_cases n p) as [LE'|GE].
+ rewrite <- sub_0_le in LE'. rewrite LE'. apply le_0_l.
+ rewrite (add_le_mono_r _ _ p). now rewrite sub_add.
Qed.
Theorem le_sub_le_add_l : forall n m p, n - m <= p <-> n <= m + p.
Proof.
intros n m p. rewrite add_comm; apply le_sub_le_add_r.
Qed.
Theorem lt_sub_lt_add_r : forall n m p,
n - p < m -> n < m + p.
Proof.
intros n m p LT.
rewrite (add_lt_mono_r _ _ p) in LT.
apply le_lt_trans with (n-p+p); auto using sub_add_le.
Qed.
(** Unfortunately, we do not have [n < m + p -> n - p < m].
For instance [1<0+2] but not [1-2<0]. *)
Theorem lt_sub_lt_add_l : forall n m p, n - m < p -> n < m + p.
Proof.
intros n m p. rewrite add_comm; apply lt_sub_lt_add_r.
Qed.
Theorem le_add_le_sub_r : forall n m p, n + p <= m -> n <= m - p.
Proof.
intros n m p LE.
apply (add_le_mono_r _ _ p).
rewrite sub_add.
- assumption.
- apply le_trans with (n+p); trivial.
rewrite <- (add_0_l p) at 1. rewrite <- add_le_mono_r. apply le_0_l.
Qed.
(** Unfortunately, we do not have [n <= m - p -> n + p <= m].
For instance [0<=1-2] but not [2+0<=1]. *)
Theorem le_add_le_sub_l : forall n m p, n + p <= m -> p <= m - n.
Proof.
intros n m p. rewrite add_comm; apply le_add_le_sub_r.
Qed.
Theorem lt_add_lt_sub_r : forall n m p, n + p < m <-> n < m - p.
Proof.
intros n m p.
destruct (le_ge_cases p m) as [LE|GE].
- rewrite <- (sub_add p m) at 1 by assumption.
now rewrite <- add_lt_mono_r.
- assert (GE' := GE). rewrite <- sub_0_le in GE'; rewrite GE'.
split; intros LT.
+ elim (lt_irrefl m). apply le_lt_trans with (n+p); trivial.
rewrite <- (add_0_l m). apply add_le_mono.
* apply le_0_l.
* assumption.
+ now elim (nlt_0_r n).
Qed.
Theorem lt_add_lt_sub_l : forall n m p, n + p < m <-> p < m - n.
Proof.
intros n m p. rewrite add_comm; apply lt_add_lt_sub_r.
Qed.
Theorem sub_lt : forall n m, m <= n -> 0 < m -> n - m < n.
Proof.
intros n m LE LT.
assert (LE' := le_sub_l n m). rewrite lt_eq_cases in LE'.
destruct LE' as [LT'|EQ].
- assumption.
- apply add_sub_eq_nz in EQ; [|order].
rewrite (add_lt_mono_r _ _ n), add_0_l in LT. order.
Qed.
Lemma sub_le_mono_r : forall n m p, n <= m -> n-p <= m-p.
Proof.
intros n m p. rewrite le_sub_le_add_r.
transitivity m.
- assumption.
- apply sub_add_le.
Qed.
Lemma sub_le_mono_l : forall n m p, n <= m -> p-m <= p-n.
Proof.
intros n m p. rewrite le_sub_le_add_r.
transitivity (p-n+n); [ apply sub_add_le | now apply add_le_mono_l].
Qed.
Theorem sub_sub_distr :
forall n m p, p <= m -> m <= n -> n - (m - p) == (n - m) + p.
Proof.
intros n m p; revert n m; induct p.
- intros n m _ _; rewrite add_0_r, sub_0_r; reflexivity.
- intros p IH n m H1 H2; rewrite add_succ_r.
destruct (zero_or_succ m) as [Hm | [k Hk]].
+ contradict H1; rewrite Hm; exact (nle_succ_0 _).
+ rewrite Hk in *; clear m Hk; rewrite sub_succ; apply <-succ_le_mono in H1.
assert (n - k ~= 0) as ne by (apply sub_gt, le_succ_l; exact H2).
rewrite sub_succ_r, add_pred_l by (exact ne).
rewrite succ_pred by (intros [[]%ne _]%eq_add_0).
apply IH with (1 := H1), le_trans with (2 := H2).
exact (le_succ_diag_r _).
Qed.
(** Sub and mul *)
Theorem mul_pred_r : forall n m, n * (P m) == n * m - n.
Proof.
intros n m; cases m.
- now rewrite pred_0, mul_0_r, sub_0_l.
- intro m; rewrite pred_succ, mul_succ_r, <- add_sub_assoc.
+ now rewrite sub_diag, add_0_r.
+ now apply eq_le_incl.
Qed.
Theorem mul_sub_distr_r : forall n m p, (n - m) * p == n * p - m * p.
Proof.
intros n m p; induct n.
- now rewrite sub_0_l, mul_0_l, sub_0_l.
- intros n IH. destruct (le_gt_cases m n) as [H | H].
+ rewrite sub_succ_l by assumption. do 2 rewrite mul_succ_l.
rewrite (add_comm ((n - m) * p) p), (add_comm (n * p) p).
rewrite <- (add_sub_assoc p (n * p) (m * p)) by now apply mul_le_mono_r.
now apply add_cancel_l.
+ assert (H1 : S n <= m) by now apply le_succ_l.
setoid_replace (S n - m) with 0 by now apply sub_0_le.
setoid_replace ((S n * p) - m * p) with 0 by (apply sub_0_le; now apply mul_le_mono_r).
apply mul_0_l.
Qed.
Theorem mul_sub_distr_l : forall n m p, p * (n - m) == p * n - p * m.
Proof.
intros n m p; rewrite (mul_comm p (n - m)), (mul_comm p n), (mul_comm p m).
apply mul_sub_distr_r.
Qed.
(** Alternative definitions of [<=] and [<] based on [+] *)
Definition le_alt n m := exists p, p + n == m.
Definition lt_alt n m := exists p, S p + n == m.
Lemma le_equiv : forall n m, le_alt n m <-> n <= m.
Proof.
intros n m; split.
- intros (p,H). rewrite <- H, add_comm. apply le_add_r.
- intro H. exists (m-n). now apply sub_add.
Qed.
Lemma lt_equiv : forall n m, lt_alt n m <-> n < m.
Proof.
intros n m; split.
- intros (p,H). rewrite <- H, add_succ_l, lt_succ_r, add_comm. apply le_add_r.
- intro H. exists (m-S n). rewrite add_succ_l, <- add_succ_r.
apply sub_add. now rewrite le_succ_l.
Qed.
#[global]
Instance le_alt_wd : Proper (eq==>eq==>iff) le_alt.
Proof.
intros x x' Hx y y' Hy; unfold le_alt.
setoid_rewrite Hx. setoid_rewrite Hy. auto with *.
Qed.
#[global]
Instance lt_alt_wd : Proper (eq==>eq==>iff) lt_alt.
Proof.
intros x x' Hx y y' Hy; unfold lt_alt.
setoid_rewrite Hx. setoid_rewrite Hy. auto with *.
Qed.
(** With these alternative definition, the dichotomy:
[forall n m, n <= m \/ m <= n]
becomes:
[forall n m, (exists p, p + n == m) \/ (exists p, p + m == n)]
We will need this in the proof of induction principle for integers
constructed as pairs of natural numbers. This formula can be proved
from know properties of [<=]. However, it can also be done directly. *)
Theorem le_alt_dichotomy : forall n m, le_alt n m \/ le_alt m n.
Proof.
intros n m; induct n.
- left; exists m; apply add_0_r.
- intros n IH.
destruct IH as [[p H] | [p H]].
+ destruct (zero_or_succ p) as [H1 | [p' H1]]; rewrite H1 in H.
* rewrite add_0_l in H. right; exists (S 0); rewrite H, add_succ_l;
now rewrite add_0_l.
* left; exists p'; rewrite add_succ_r; now rewrite add_succ_l in H.
+ right; exists (S p). rewrite add_succ_l; now rewrite H.
Qed.
Theorem add_dichotomy :
forall n m, (exists p, p + n == m) \/ (exists p, p + m == n).
Proof. exact le_alt_dichotomy. Qed.
End NSubProp.
|