File: WfExtensionality.v

package info (click to toggle)
rocq-stdlib 9.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 11,828 kB
  • sloc: python: 2,928; sh: 444; makefile: 319; javascript: 24; ml: 2
file content (51 lines) | stat: -rw-r--r-- 2,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(** Reformulation of the Wf module using subsets where possible, providing
   the support for [Program]'s treatment of well-founded definitions. *)

From Stdlib.Init Require Import Wf.
From Stdlib.Program Require Import Utils.
From Stdlib.Program Require Import Wf.

Local Open Scope program_scope.

(** This module provides the fixpoint equation provided one assumes
   functional extensionality. *)
From Stdlib.Logic Require Import FunctionalExtensionality.

Module WfExtensionality.

  (** The two following lemmas allow to unfold a well-founded fixpoint definition without
     restriction using the functional extensionality axiom. *)

  (** For a function defined with Program using a well-founded order. *)

  Program Lemma fix_sub_eq_ext :
    forall (A : Type) (R : A -> A -> Prop) (Rwf : well_founded R)
      (P : A -> Type)
      (F_sub : forall x : A, (forall y:{y : A | R y x}, P (` y)) -> P x),
      forall x : A,
        Fix_sub A R Rwf P F_sub x =
          F_sub x (fun y:{y : A | R y x} => Fix_sub A R Rwf P F_sub (` y)).
  Proof.
    intros A R Rwf P F_sub x; apply Fix_eq ; auto.
    intros ? f g H.
    assert(f = g) as H0.
    - extensionality y ; apply H.
    - rewrite H0 ; auto.
  Qed.

  (** Tactic to unfold once a definition based on [Fix_sub]. *)

  Ltac unfold_sub f fargs :=
    set (call:=fargs) ; unfold f in call ; unfold call ; clear call ;
      rewrite fix_sub_eq_ext ; repeat fold_sub f ; simpl proj1_sig.

End WfExtensionality.