1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import PeanoNat QArith Qabs.
From Stdlib Require Import ConstructiveReals.
From Stdlib Require Import ConstructiveAbs.
Local Open Scope ConstructiveReals.
(** Definitions and basic properties of limits of real sequences
and series.
WARNING: this file is experimental and likely to change in future releases.
*)
Lemma CR_cv_extens
: forall {R : ConstructiveReals} (xn yn : nat -> CRcarrier R) (l : CRcarrier R),
(forall n:nat, xn n == yn n)
-> CR_cv R xn l
-> CR_cv R yn l.
Proof.
intros. intro p. specialize (H0 p) as [n nmaj]. exists n.
intros. specialize (nmaj i H0).
apply (CRle_trans _ (CRabs R (CRminus R (xn i) l))).
2: exact nmaj. rewrite <- CRabs_def. split.
- apply (CRle_trans _ (CRminus R (xn i) l)).
+ apply CRplus_le_compat_r. specialize (H i) as [H _]. exact H.
+ pose proof (CRabs_def R (CRminus R (xn i) l) (CRabs R (CRminus R (xn i) l)))
as [_ H1].
apply H1. apply CRle_refl.
- apply (CRle_trans _ (CRopp R (CRminus R (xn i) l))).
+ intro abs. apply CRopp_lt_cancel, CRplus_lt_reg_r in abs.
specialize (H i) as [_ H]. contradiction.
+ pose proof (CRabs_def R (CRminus R (xn i) l) (CRabs R (CRminus R (xn i) l)))
as [_ H1].
apply H1. apply CRle_refl.
Qed.
Lemma CR_cv_opp : forall {R : ConstructiveReals} (xn : nat -> CRcarrier R) (l : CRcarrier R),
CR_cv R xn l
-> CR_cv R (fun n => - xn n) (- l).
Proof.
intros. intro p. specialize (H p) as [n nmaj].
exists n. intros. specialize (nmaj i H).
apply (CRle_trans _ (CRabs R (CRminus R (xn i) l))).
2: exact nmaj. clear nmaj H.
unfold CRminus. rewrite <- CRopp_plus_distr, CRabs_opp.
apply CRle_refl.
Qed.
Lemma CR_cv_plus : forall {R : ConstructiveReals} (xn yn : nat -> CRcarrier R) (a b : CRcarrier R),
CR_cv R xn a
-> CR_cv R yn b
-> CR_cv R (fun n => xn n + yn n) (a + b).
Proof.
intros. intro p.
specialize (H (2*p)%positive) as [i imaj].
specialize (H0 (2*p)%positive) as [j jmaj].
exists (max i j). intros.
apply (CRle_trans
_ (CRabs R (CRplus R (CRminus R (xn i0) a) (CRminus R (yn i0) b)))).
- apply CRabs_morph.
unfold CRminus.
do 2 rewrite <- (Radd_assoc (CRisRing R)).
apply CRplus_morph.
+ reflexivity.
+ rewrite CRopp_plus_distr.
destruct (CRisRing R). rewrite Radd_comm, <- Radd_assoc.
apply CRplus_morph.
* reflexivity.
* rewrite Radd_comm. reflexivity.
- apply (CRle_trans _ _ _ (CRabs_triang _ _)).
apply (CRle_trans _ (CRplus R (CR_of_Q R (1 # 2*p)) (CR_of_Q R (1 # 2*p)))).
+ apply CRplus_le_compat.
* apply imaj, (Nat.le_trans _ _ _ (Nat.le_max_l _ _) H).
* apply jmaj, (Nat.le_trans _ _ _ (Nat.le_max_r _ _) H).
+ apply (CRle_trans _ (CR_of_Q R ((1 # 2 * p) + (1 # 2 * p)))).
* apply CR_of_Q_plus.
* apply CR_of_Q_le.
rewrite Qinv_plus_distr. setoid_replace (1 + 1 # 2 * p) with (1 # p).
-- apply Qle_refl.
-- reflexivity.
Qed.
Lemma CR_cv_unique : forall {R : ConstructiveReals} (xn : nat -> CRcarrier R)
(a b : CRcarrier R),
CR_cv R xn a
-> CR_cv R xn b
-> a == b.
Proof.
intros. assert (CR_cv R (fun _ => 0) (CRminus R b a)).
{ apply (CR_cv_extens (fun n => CRminus R (xn n) (xn n))).
- intro n. unfold CRminus. apply CRplus_opp_r.
- apply CR_cv_plus.
+ exact H0.
+ apply CR_cv_opp, H. }
assert (forall q r : Q, 0 < q -> / q < r -> 1 < q * r)%Q.
{ intros. apply (Qmult_lt_l _ _ q) in H3.
- rewrite Qmult_inv_r in H3.
+ exact H3.
+ intro abs.
rewrite abs in H2. exact (Qlt_irrefl 0 H2).
- exact H2. }
clear H H0 xn. remember (CRminus R b a) as z.
assert (z == 0). 1:split.
- intro abs. destruct (CR_Q_dense R _ _ abs) as [q [H0 H]].
destruct (Qarchimedean (/(-q))) as [p pmaj].
specialize (H1 p) as [n nmaj].
specialize (nmaj n (Nat.le_refl n)). apply nmaj.
apply (CRlt_trans _ (CR_of_Q R (-q))).
+ apply CR_of_Q_lt.
apply H2 in pmaj.
* apply (Qmult_lt_r _ _ (1#p)) in pmaj. 2: reflexivity.
rewrite Qmult_1_l, <- Qmult_assoc in pmaj.
setoid_replace ((Z.pos p # 1) * (1 # p))%Q with 1%Q in pmaj.
-- rewrite Qmult_1_r in pmaj. exact pmaj.
-- unfold Qeq, Qnum, Qden; simpl.
do 2 rewrite Pos.mul_1_r. reflexivity.
* apply (Qplus_lt_l _ _ q). ring_simplify.
apply (lt_CR_of_Q R q 0). exact H.
+ apply (CRlt_le_trans _ (CRopp R z)).
* apply (CRle_lt_trans _ (CRopp R (CR_of_Q R q))).
-- apply CR_of_Q_opp.
-- apply CRopp_gt_lt_contravar, H0.
* apply (CRle_trans _ (CRabs R (CRopp R z))).
-- pose proof (CRabs_def R (CRopp R z) (CRabs R (CRopp R z))) as [_ H1].
apply H1, CRle_refl.
-- apply CRabs_morph. unfold CRminus. symmetry. apply CRplus_0_l.
- intro abs. destruct (CR_Q_dense R _ _ abs) as [q [H0 H]].
destruct (Qarchimedean (/q)) as [p pmaj].
specialize (H1 p) as [n nmaj].
specialize (nmaj n (Nat.le_refl n)). apply nmaj.
apply (CRlt_trans _ (CR_of_Q R q)).
+ apply CR_of_Q_lt.
apply H2 in pmaj.
* apply (Qmult_lt_r _ _ (1#p)) in pmaj. 2: reflexivity.
rewrite Qmult_1_l, <- Qmult_assoc in pmaj.
setoid_replace ((Z.pos p # 1) * (1 # p))%Q with 1%Q in pmaj.
-- rewrite Qmult_1_r in pmaj. exact pmaj.
-- unfold Qeq, Qnum, Qden; simpl.
do 2 rewrite Pos.mul_1_r. reflexivity.
* apply (lt_CR_of_Q R 0 q). exact H0.
+ apply (CRlt_le_trans _ _ _ H).
apply (CRle_trans _ (CRabs R (CRopp R z))).
* apply (CRle_trans _ (CRabs R z)).
-- pose proof (CRabs_def R z (CRabs R z)) as [_ H1].
apply H1. apply CRle_refl.
-- apply CRabs_opp.
* apply CRabs_morph. unfold CRminus. symmetry. apply CRplus_0_l.
- subst z. apply (CRplus_eq_reg_l (CRopp R a)).
rewrite CRplus_opp_l, CRplus_comm. symmetry. exact H.
Qed.
Lemma CR_cv_eq : forall {R : ConstructiveReals}
(v u : nat -> CRcarrier R) (s : CRcarrier R),
(forall n:nat, u n == v n)
-> CR_cv R u s
-> CR_cv R v s.
Proof.
intros R v u s seq H1 p. specialize (H1 p) as [N H0].
exists N. intros. unfold CRminus. rewrite <- seq. apply H0, H.
Qed.
Lemma CR_cauchy_eq : forall {R : ConstructiveReals}
(un vn : nat -> CRcarrier R),
(forall n:nat, un n == vn n)
-> CR_cauchy R un
-> CR_cauchy R vn.
Proof.
intros. intro p. specialize (H0 p) as [n H0].
exists n. intros. specialize (H0 i j H1 H2).
unfold CRminus in H0. rewrite <- CRabs_def.
rewrite <- CRabs_def in H0.
do 2 rewrite H in H0. exact H0.
Qed.
Lemma CR_cv_proper : forall {R : ConstructiveReals}
(un : nat -> CRcarrier R) (a b : CRcarrier R),
CR_cv R un a
-> a == b
-> CR_cv R un b.
Proof.
intros. intro p. specialize (H p) as [n H].
exists n. intros. unfold CRminus. rewrite <- H0. apply H, H1.
Qed.
#[global]
Instance CR_cv_morph
: forall {R : ConstructiveReals} (un : nat -> CRcarrier R), CMorphisms.Proper
(CMorphisms.respectful (CReq R) CRelationClasses.iffT) (CR_cv R un).
Proof.
split.
- intros. apply (CR_cv_proper un x).
+ exact H0.
+ exact H.
- intros. apply (CR_cv_proper un y).
+ exact H0.
+ symmetry. exact H.
Qed.
Lemma Un_cv_nat_real : forall {R : ConstructiveReals}
(un : nat -> CRcarrier R) (l : CRcarrier R),
CR_cv R un l
-> forall eps : CRcarrier R,
0 < eps
-> { p : nat & forall i:nat, le p i -> CRabs R (un i - l) < eps }.
Proof.
intros. destruct (CR_archimedean R (CRinv R eps (inr H0))) as [k kmaj].
assert (0 < CR_of_Q R (Z.pos k # 1)).
{ apply CR_of_Q_lt. reflexivity. }
specialize (H k) as [p pmaj].
exists p. intros.
apply (CRle_lt_trans _ (CR_of_Q R (1 # k))).
- apply pmaj, H.
- apply (CRmult_lt_reg_l (CR_of_Q R (Z.pos k # 1))).
+ exact H1.
+ rewrite <- CR_of_Q_mult.
apply (CRle_lt_trans _ 1).
* apply CR_of_Q_le.
unfold Qle; simpl. do 2 rewrite Pos.mul_1_r. apply Z.le_refl.
* apply (CRmult_lt_reg_r (CRinv R eps (inr H0))).
-- apply CRinv_0_lt_compat, H0.
-- rewrite CRmult_1_l, CRmult_assoc.
rewrite CRinv_r, CRmult_1_r. exact kmaj.
Qed.
Lemma Un_cv_real_nat : forall {R : ConstructiveReals}
(un : nat -> CRcarrier R) (l : CRcarrier R),
(forall eps : CRcarrier R,
0 < eps
-> { p : nat & forall i:nat, le p i -> CRabs R (un i - l) < eps })
-> CR_cv R un l.
Proof.
intros. intros n.
specialize (H (CR_of_Q R (1#n))) as [p pmaj].
- apply CR_of_Q_lt. reflexivity.
- exists p. intros. apply CRlt_asym. apply pmaj. apply H.
Qed.
Lemma CR_cv_minus :
forall {R : ConstructiveReals}
(An Bn:nat -> CRcarrier R) (l1 l2:CRcarrier R),
CR_cv R An l1 -> CR_cv R Bn l2
-> CR_cv R (fun i:nat => An i - Bn i) (l1 - l2).
Proof.
intros. apply CR_cv_plus.
- apply H.
- intros p. specialize (H0 p) as [n H0]. exists n.
intros. setoid_replace (- Bn i - - l2) with (- (Bn i - l2)).
+ rewrite CRabs_opp. apply H0, H1.
+ unfold CRminus.
rewrite CRopp_plus_distr, CRopp_involutive. reflexivity.
Qed.
Lemma CR_cv_nonneg :
forall {R : ConstructiveReals} (An:nat -> CRcarrier R) (l:CRcarrier R),
CR_cv R An l
-> (forall n:nat, 0 <= An n)
-> 0 <= l.
Proof.
intros. intro abs.
destruct (Un_cv_nat_real _ l H (-l)) as [N H1].
- rewrite <- CRopp_0. apply CRopp_gt_lt_contravar. apply abs.
- specialize (H1 N (Nat.le_refl N)).
pose proof (CRabs_def R (An N - l) (CRabs R (An N - l))) as [_ H2].
apply (CRle_lt_trans _ _ _ (CRle_abs _)) in H1.
apply (H0 N). apply (CRplus_lt_reg_r (-l)).
rewrite CRplus_0_l. exact H1.
Qed.
Lemma CR_cv_scale : forall {R : ConstructiveReals} (u : nat -> CRcarrier R)
(a : CRcarrier R) (s : CRcarrier R),
CR_cv R u s -> CR_cv R (fun n => u n * a) (s * a).
Proof.
intros. intros n.
destruct (CR_archimedean R (1 + CRabs R a)).
destruct (H (n * x)%positive).
exists x0. intros.
unfold CRminus. rewrite CRopp_mult_distr_l.
rewrite <- CRmult_plus_distr_r.
apply (CRle_trans _ ((CR_of_Q R (1 # n * x)) * CRabs R a)).
- rewrite CRabs_mult. apply CRmult_le_compat_r.
+ apply CRabs_pos.
+ apply c0, H0.
- setoid_replace (1 # n * x)%Q with ((1 # n) *(1# x))%Q. 2: reflexivity.
rewrite <- (CRmult_1_r (CR_of_Q R (1#n))).
rewrite CR_of_Q_mult, CRmult_assoc.
apply CRmult_le_compat_l.
+ apply CR_of_Q_le. discriminate.
+ intro abs.
apply (CRmult_lt_compat_l (CR_of_Q R (Z.pos x #1))) in abs.
* rewrite CRmult_1_r, <- CRmult_assoc, <- CR_of_Q_mult in abs.
rewrite (CR_of_Q_morph R ((Z.pos x # 1) * (1 # x))%Q 1%Q) in abs.
-- rewrite CRmult_1_l in abs.
apply (CRlt_asym _ _ abs), (CRlt_trans _ (1 + CRabs R a)).
2: exact c. rewrite <- CRplus_0_l, <- CRplus_assoc.
apply CRplus_lt_compat_r. rewrite CRplus_0_r. apply CRzero_lt_one.
-- unfold Qmult, Qeq, Qnum, Qden. ring_simplify. rewrite Pos.mul_1_l.
reflexivity.
* apply (CRlt_trans _ (1+CRabs R a)). 2: exact c.
rewrite CRplus_comm.
rewrite <- (CRplus_0_r 0). apply CRplus_le_lt_compat.
-- apply CRabs_pos.
-- apply CRzero_lt_one.
Qed.
Lemma CR_cv_const : forall {R : ConstructiveReals} (a : CRcarrier R),
CR_cv R (fun n => a) a.
Proof.
intros a p. exists O. intros.
unfold CRminus. rewrite CRplus_opp_r.
rewrite CRabs_right.
- apply CR_of_Q_le. discriminate.
- apply CRle_refl.
Qed.
Lemma Rcv_cauchy_mod : forall {R : ConstructiveReals}
(un : nat -> CRcarrier R) (l : CRcarrier R),
CR_cv R un l -> CR_cauchy R un.
Proof.
intros. intros p. specialize (H (2*p)%positive) as [k H].
exists k. intros n q H0 H1.
setoid_replace (1#p)%Q with ((1#2*p) + (1#2*p))%Q.
- rewrite CR_of_Q_plus.
setoid_replace (un n - un q) with ((un n - l) - (un q - l)).
+ apply (CRle_trans _ _ _ (CRabs_triang _ _)).
apply CRplus_le_compat.
* apply H, H0.
* rewrite CRabs_opp. apply H. apply H1.
+ unfold CRminus. rewrite CRplus_assoc. apply CRplus_morph.
* reflexivity.
* rewrite CRplus_comm, CRopp_plus_distr, CRopp_involutive.
rewrite CRplus_assoc, CRplus_opp_r, CRplus_0_r. reflexivity.
- rewrite Qinv_plus_distr. reflexivity.
Qed.
Lemma CR_growing_transit : forall {R : ConstructiveReals} (un : nat -> CRcarrier R),
(forall n:nat, un n <= un (S n))
-> forall n p : nat, le n p -> un n <= un p.
Proof.
induction p.
- intros. inversion H0. apply CRle_refl.
- intros. apply Nat.le_succ_r in H0. destruct H0.
+ apply (CRle_trans _ (un p)).
* apply IHp, H0.
* apply H.
+ subst n. apply CRle_refl.
Qed.
Lemma growing_ineq :
forall {R : ConstructiveReals} (Un:nat -> CRcarrier R) (l:CRcarrier R),
(forall n:nat, Un n <= Un (S n))
-> CR_cv R Un l -> forall n:nat, Un n <= l.
Proof.
intros. intro abs.
destruct (Un_cv_nat_real _ l H0 (Un n - l)) as [N H1].
- rewrite <- (CRplus_opp_r l). apply CRplus_lt_compat_r. exact abs.
- specialize (H1 (max n N) (Nat.le_max_r _ _)).
apply (CRle_lt_trans _ _ _ (CRle_abs _)) in H1.
apply CRplus_lt_reg_r in H1.
apply (CR_growing_transit Un H n (max n N)).
+ apply Nat.le_max_l.
+ exact H1.
Qed.
Lemma CR_cv_open_below
: forall {R : ConstructiveReals}
(un : nat -> CRcarrier R) (m l : CRcarrier R),
CR_cv R un l
-> m < l
-> { n : nat & forall i:nat, le n i -> m < un i }.
Proof.
intros. apply CRlt_minus in H0.
pose proof (Un_cv_nat_real _ l H (l-m) H0) as [n nmaj].
exists n. intros. specialize (nmaj i H1).
apply CRabs_lt in nmaj.
destruct nmaj as [_ nmaj]. unfold CRminus in nmaj.
rewrite CRopp_plus_distr, CRopp_involutive, CRplus_comm in nmaj.
apply CRplus_lt_reg_l in nmaj.
apply (CRplus_lt_reg_l R (-m)). rewrite CRplus_opp_l.
apply (CRplus_lt_reg_r (-un i)). rewrite CRplus_0_l.
rewrite CRplus_assoc, CRplus_opp_r, CRplus_0_r. exact nmaj.
Qed.
Lemma CR_cv_open_above
: forall {R : ConstructiveReals}
(un : nat -> CRcarrier R) (m l : CRcarrier R),
CR_cv R un l
-> l < m
-> { n : nat & forall i:nat, le n i -> un i < m }.
Proof.
intros. apply CRlt_minus in H0.
pose proof (Un_cv_nat_real _ l H (m-l) H0) as [n nmaj].
exists n. intros. specialize (nmaj i H1).
apply CRabs_lt in nmaj.
destruct nmaj as [nmaj _]. apply CRplus_lt_reg_r in nmaj.
exact nmaj.
Qed.
Lemma CR_cv_bound_down : forall {R : ConstructiveReals}
(u : nat -> CRcarrier R) (A l : CRcarrier R) (N : nat),
(forall n:nat, le N n -> A <= u n)
-> CR_cv R u l
-> A <= l.
Proof.
intros. intro r.
apply (CRplus_lt_compat_r (-l)) in r. rewrite CRplus_opp_r in r.
destruct (Un_cv_nat_real _ l H0 (A - l) r) as [n H1].
apply (H (n+N)%nat).
- rewrite <- (Nat.add_0_l N), Nat.add_assoc.
apply Nat.add_le_mono_r, Nat.le_0_l.
- specialize (H1 (n+N)%nat). apply (CRplus_lt_reg_r (-l)).
assert (n + N >= n)%nat.
+ rewrite <- (Nat.add_0_r n), <- Nat.add_assoc.
apply Nat.add_le_mono_l, Nat.le_0_l.
+ specialize (H1 H2).
apply (CRle_lt_trans _ (CRabs R (u (n + N)%nat - l))).
* apply CRle_abs.
* assumption.
Qed.
Lemma CR_cv_bound_up : forall {R : ConstructiveReals}
(u : nat -> CRcarrier R) (A l : CRcarrier R) (N : nat),
(forall n:nat, le N n -> u n <= A)
-> CR_cv R u l
-> l <= A.
Proof.
intros. intro r.
apply (CRplus_lt_compat_r (-A)) in r. rewrite CRplus_opp_r in r.
destruct (Un_cv_nat_real _ l H0 (l-A) r) as [n H1].
apply (H (n+N)%nat).
- rewrite <- (Nat.add_0_l N). apply Nat.add_le_mono_r, Nat.le_0_l.
- specialize (H1 (n+N)%nat). apply (CRplus_lt_reg_l R (l - A - u (n+N)%nat)).
unfold CRminus. repeat rewrite CRplus_assoc.
rewrite CRplus_opp_l, CRplus_0_r, (CRplus_comm (-A)).
rewrite CRplus_assoc, CRplus_opp_r, CRplus_0_r.
apply (CRle_lt_trans _ _ _ (CRle_abs _)).
fold (l - u (n+N)%nat). rewrite CRabs_minus_sym. apply H1.
rewrite <- (Nat.add_0_r n), <- Nat.add_assoc.
apply Nat.add_le_mono_l, Nat.le_0_l.
Qed.
Lemma CR_cv_le : forall {R : ConstructiveReals}
(u v : nat -> CRcarrier R) (a b : CRcarrier R),
(forall n:nat, u n <= v n)
-> CR_cv R u a
-> CR_cv R v b
-> a <= b.
Proof.
intros. apply (CRplus_le_reg_r (-a)). rewrite CRplus_opp_r.
apply (CR_cv_bound_down (fun i:nat => v i - u i) _ _ 0).
- intros. rewrite <- (CRplus_opp_l (u n)).
unfold CRminus.
rewrite (CRplus_comm (v n)). apply CRplus_le_compat_l.
apply H.
- apply CR_cv_plus.
+ exact H1.
+ apply CR_cv_opp, H0.
Qed.
Lemma CR_cv_abs_cont : forall {R : ConstructiveReals}
(u : nat -> CRcarrier R) (s : CRcarrier R),
CR_cv R u s
-> CR_cv R (fun n => CRabs R (u n)) (CRabs R s).
Proof.
intros. intros eps. specialize (H eps) as [N lim].
exists N. intros n H.
apply (CRle_trans _ (CRabs R (u n - s))).
- apply CRabs_triang_inv2.
- apply lim. assumption.
Qed.
Lemma CR_cv_dist_cont : forall {R : ConstructiveReals}
(u : nat -> CRcarrier R) (a s : CRcarrier R),
CR_cv R u s
-> CR_cv R (fun n => CRabs R (a - u n)) (CRabs R (a - s)).
Proof.
intros. apply CR_cv_abs_cont.
intros eps. specialize (H eps) as [N lim].
exists N. intros n H.
setoid_replace (a - u n - (a - s)) with (s - (u n)).
- specialize (lim n).
rewrite CRabs_minus_sym.
apply lim. assumption.
- unfold CRminus. rewrite CRopp_plus_distr, CRopp_involutive.
rewrite (CRplus_comm a), (CRplus_comm s).
rewrite CRplus_assoc. apply CRplus_morph.
+ reflexivity.
+ rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l. reflexivity.
Qed.
Lemma CR_cv_shift :
forall {R : ConstructiveReals} f k l,
CR_cv R (fun n => f (n + k)%nat) l -> CR_cv R f l.
Proof.
intros. intros eps.
specialize (H eps) as [N Nmaj].
exists (N+k)%nat. intros n H.
destruct (Nat.le_exists_sub k n).
- apply (Nat.le_trans _ (N + k)). 2: exact H.
apply (Nat.le_trans _ (0 + k)).
+ apply Nat.le_refl.
+ rewrite <- Nat.add_le_mono_r. apply Nat.le_0_l.
- destruct H0.
subst n. apply Nmaj. unfold ge in H.
rewrite <- Nat.add_le_mono_r in H. exact H.
Qed.
Lemma CR_cv_shift' :
forall {R : ConstructiveReals} f k l,
CR_cv R f l -> CR_cv R (fun n => f (n + k)%nat) l.
Proof.
intros R f' k l cvf eps; destruct (cvf eps) as [N Pn].
exists N; intros n nN; apply Pn; auto.
apply Nat.le_trans with n; [ assumption | apply Nat.le_add_r ].
Qed.
|