1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import Znat.
From Stdlib Require Import QArith Qabs.
From Stdlib Require Import ConstructiveReals.
From Stdlib Require Import ConstructiveRealsMorphisms.
From Stdlib Require Import ConstructiveAbs.
From Stdlib Require Import ConstructiveLimits.
Local Open Scope ConstructiveReals.
(**
Definition and properties of finite sums and powers.
WARNING: this file is experimental and likely to change in future releases.
*)
Fixpoint CRsum {R : ConstructiveReals}
(f:nat -> CRcarrier R) (N:nat) : CRcarrier R :=
match N with
| O => f 0%nat
| S i => CRsum f i + f (S i)
end.
Lemma CRsum_eq :
forall {R : ConstructiveReals} (An Bn:nat -> CRcarrier R) (N:nat),
(forall i:nat, (i <= N)%nat -> An i == Bn i) ->
CRsum An N == CRsum Bn N.
Proof.
induction N.
- intros. exact (H O (Nat.le_refl _)).
- intros. simpl. apply CRplus_morph.
+ apply IHN.
intros. apply H. apply (Nat.le_trans _ N _ H0), le_S, Nat.le_refl.
+ apply H, Nat.le_refl.
Qed.
Lemma sum_eq_R0 : forall {R : ConstructiveReals} (un : nat -> CRcarrier R) (n : nat),
(forall k:nat, un k == 0)
-> CRsum un n == 0.
Proof.
induction n.
- intros. apply H.
- intros. simpl. rewrite IHn.
+ rewrite H. apply CRplus_0_l.
+ exact H.
Qed.
Definition INR {R : ConstructiveReals} (n : nat) : CRcarrier R
:= CR_of_Q R (Z.of_nat n # 1).
Lemma sum_const : forall {R : ConstructiveReals} (a : CRcarrier R) (n : nat),
CRsum (fun _ => a) n == a * INR (S n).
Proof.
induction n.
- unfold INR. simpl. rewrite CRmult_1_r. reflexivity.
- simpl. rewrite IHn. unfold INR.
replace (Z.of_nat (S (S n))) with (Z.of_nat (S n) + 1)%Z.
+ rewrite <- Qinv_plus_distr, CR_of_Q_plus, CRmult_plus_distr_l.
apply CRplus_morph.
* reflexivity.
* rewrite CRmult_1_r. reflexivity.
+ replace 1%Z with (Z.of_nat 1).
* rewrite <- Nat2Z.inj_add.
apply f_equal. rewrite Nat.add_comm. reflexivity.
* reflexivity.
Qed.
Lemma multiTriangleIneg : forall {R : ConstructiveReals} (u : nat -> CRcarrier R) (n : nat),
CRabs R (CRsum u n) <= CRsum (fun k => CRabs R (u k)) n.
Proof.
induction n.
- apply CRle_refl.
- simpl. apply (CRle_trans _ (CRabs R (CRsum u n) + CRabs R (u (S n)))).
+ apply CRabs_triang.
+ apply CRplus_le_compat.
* apply IHn.
* apply CRle_refl.
Qed.
Lemma sum_assoc : forall {R : ConstructiveReals} (u : nat -> CRcarrier R) (n p : nat),
CRsum u (S n + p)
== CRsum u n + CRsum (fun k => u (S n + k)%nat) p.
Proof.
induction p.
- simpl. rewrite Nat.add_0_r. reflexivity.
- simpl. rewrite (Radd_assoc (CRisRing R)). apply CRplus_morph.
+ rewrite Nat.add_succ_r.
rewrite (CRsum_eq (fun k : nat => u (S (n + k))) (fun k : nat => u (S n + k)%nat)).
* rewrite <- IHp. reflexivity.
* intros. reflexivity.
+ reflexivity.
Qed.
Lemma sum_Rle : forall {R : ConstructiveReals} (un vn : nat -> CRcarrier R) (n : nat),
(forall k, le k n -> un k <= vn k)
-> CRsum un n <= CRsum vn n.
Proof.
induction n.
- intros. apply H. apply Nat.le_refl.
- intros. simpl. apply CRplus_le_compat.
+ apply IHn.
intros. apply H. apply (Nat.le_trans _ n _ H0). apply le_S, Nat.le_refl.
+ apply H. apply Nat.le_refl.
Qed.
Lemma Abs_sum_maj : forall {R : ConstructiveReals} (un vn : nat -> CRcarrier R),
(forall n:nat, CRabs R (un n) <= (vn n))
-> forall n p:nat, (CRabs R (CRsum un n - CRsum un p) <=
CRsum vn (Init.Nat.max n p) - CRsum vn (Init.Nat.min n p)).
Proof.
intros. destruct (le_lt_dec n p).
- destruct (Nat.le_exists_sub n p) as [k [maj _]].
+ assumption.
+ subst p. rewrite max_r. 2:assumption.
rewrite min_l. 2:assumption.
setoid_replace (CRsum un n - CRsum un (k + n))
with (-(CRsum un (k + n) - CRsum un n)).
* rewrite CRabs_opp.
destruct k.
-- simpl. unfold CRminus. rewrite CRplus_opp_r.
rewrite CRplus_opp_r.
rewrite CRabs_right; apply CRle_refl.
-- replace (S k + n)%nat with (S n + k)%nat.
++ unfold CRminus. rewrite sum_assoc. rewrite sum_assoc.
rewrite CRplus_comm.
rewrite <- CRplus_assoc. rewrite CRplus_opp_l.
rewrite CRplus_0_l. rewrite CRplus_comm.
rewrite <- CRplus_assoc. rewrite CRplus_opp_l.
rewrite CRplus_0_l.
apply (CRle_trans _ (CRsum (fun k0 : nat => CRabs R (un (S n + k0)%nat)) k)).
** apply multiTriangleIneg.
** apply sum_Rle. intros.
apply H.
++ rewrite Nat.add_comm, Nat.add_succ_r. reflexivity.
* unfold CRminus. rewrite CRopp_plus_distr, CRopp_involutive, CRplus_comm.
reflexivity.
- destruct (Nat.le_exists_sub p n) as [k [maj _]].
+ unfold lt in l.
apply (Nat.le_trans p (S p)).
* apply le_S. apply Nat.le_refl.
* assumption.
+ subst n. rewrite max_l.
* rewrite min_r.
-- destruct k.
++ simpl. unfold CRminus. rewrite CRplus_opp_r.
rewrite CRplus_opp_r. rewrite CRabs_right.
** apply CRle_refl.
** apply CRle_refl.
++ replace (S k + p)%nat with (S p + k)%nat.
** unfold CRminus.
rewrite sum_assoc. rewrite sum_assoc.
rewrite CRplus_comm.
rewrite <- CRplus_assoc. rewrite CRplus_opp_l.
rewrite CRplus_0_l. rewrite CRplus_comm.
rewrite <- CRplus_assoc. rewrite CRplus_opp_l.
rewrite CRplus_0_l.
apply (CRle_trans _ (CRsum (fun k0 : nat => CRabs R (un (S p + k0)%nat)) k)).
{ apply multiTriangleIneg. }
apply sum_Rle. intros.
apply H.
** rewrite Nat.add_comm, Nat.add_succ_r. reflexivity.
-- apply (Nat.le_trans p (S p)).
++ apply le_S. apply Nat.le_refl.
++ assumption.
* apply (Nat.le_trans p (S p)).
-- apply le_S. apply Nat.le_refl.
-- assumption.
Qed.
Lemma cond_pos_sum : forall {R : ConstructiveReals} (un : nat -> CRcarrier R) (n : nat),
(forall k, 0 <= un k)
-> 0 <= CRsum un n.
Proof.
induction n.
- intros. apply H.
- intros. simpl. rewrite <- CRplus_0_r.
apply CRplus_le_compat.
+ apply IHn, H.
+ apply H.
Qed.
Lemma pos_sum_more : forall {R : ConstructiveReals} (u : nat -> CRcarrier R)
(n p : nat),
(forall k:nat, 0 <= u k)
-> le n p -> CRsum u n <= CRsum u p.
Proof.
intros. destruct (Nat.le_exists_sub n p H0). destruct H1. subst p.
rewrite Nat.add_comm.
destruct x.
- rewrite Nat.add_0_r. apply CRle_refl.
- rewrite Nat.add_succ_r.
replace (S (n + x)) with (S n + x)%nat.
+ rewrite sum_assoc.
rewrite <- CRplus_0_r, CRplus_assoc.
apply CRplus_le_compat_l. rewrite CRplus_0_l.
apply cond_pos_sum.
intros. apply H.
+ auto.
Qed.
Lemma sum_opp : forall {R : ConstructiveReals} (un : nat -> CRcarrier R) (n : nat),
CRsum (fun k => - un k) n == - CRsum un n.
Proof.
induction n.
- reflexivity.
- simpl. rewrite IHn. rewrite CRopp_plus_distr. reflexivity.
Qed.
Lemma sum_scale : forall {R : ConstructiveReals} (u : nat -> CRcarrier R) (a : CRcarrier R) (n : nat),
CRsum (fun k : nat => u k * a) n == CRsum u n * a.
Proof.
induction n.
- simpl. rewrite (Rmul_comm (CRisRing R)). reflexivity.
- simpl. rewrite IHn. rewrite CRmult_plus_distr_r.
apply CRplus_morph.
+ reflexivity.
+ rewrite (Rmul_comm (CRisRing R)). reflexivity.
Qed.
Lemma sum_plus : forall {R : ConstructiveReals} (u v : nat -> CRcarrier R) (n : nat),
CRsum (fun n0 : nat => u n0 + v n0) n == CRsum u n + CRsum v n.
Proof.
induction n.
- reflexivity.
- simpl. rewrite IHn. do 2 rewrite CRplus_assoc.
apply CRplus_morph.
+ reflexivity.
+ rewrite CRplus_comm, CRplus_assoc.
apply CRplus_morph.
* reflexivity.
* apply CRplus_comm.
Qed.
Lemma decomp_sum :
forall {R : ConstructiveReals} (An:nat -> CRcarrier R) (N:nat),
(0 < N)%nat ->
CRsum An N == An 0%nat + CRsum (fun i:nat => An (S i)) (pred N).
Proof.
induction N.
- intros. exfalso. inversion H.
- intros _. destruct N.
+ simpl. reflexivity.
+ simpl.
rewrite IHN.
* rewrite CRplus_assoc.
apply CRplus_morph.
-- reflexivity.
-- reflexivity.
* apply le_n_S, Nat.le_0_l.
Qed.
Lemma reverse_sum : forall {R : ConstructiveReals} (u : nat -> CRcarrier R) (n : nat),
CRsum u n == CRsum (fun k => u (n-k)%nat) n.
Proof.
induction n.
- intros. reflexivity.
- rewrite (decomp_sum (fun k : nat => u (S n - k)%nat)).
+ simpl.
rewrite CRplus_comm. apply CRplus_morph.
* reflexivity.
* assumption.
+ unfold lt. apply -> Nat.succ_le_mono; apply Nat.le_0_l.
Qed.
Lemma Rplus_le_pos : forall {R : ConstructiveReals} (a b : CRcarrier R),
0 <= b -> a <= a + b.
Proof.
intros. rewrite <- (CRplus_0_r a). rewrite CRplus_assoc.
apply CRplus_le_compat_l. rewrite CRplus_0_l. assumption.
Qed.
Lemma selectOneInSum : forall {R : ConstructiveReals} (u : nat -> CRcarrier R) (n i : nat),
le i n
-> (forall k:nat, 0 <= u k)
-> u i <= CRsum u n.
Proof.
induction n.
- intros. inversion H. subst i. apply CRle_refl.
- intros. apply Nat.le_succ_r in H. destruct H.
+ apply (CRle_trans _ (CRsum u n)).
* apply IHn.
-- assumption.
-- assumption.
* simpl. apply Rplus_le_pos. apply H0.
+ subst i. simpl. rewrite CRplus_comm. apply Rplus_le_pos.
apply cond_pos_sum. intros. apply H0.
Qed.
Lemma splitSum : forall {R : ConstructiveReals} (un : nat -> CRcarrier R)
(filter : nat -> bool) (n : nat),
CRsum un n
== CRsum (fun i => if filter i then un i else 0) n
+ CRsum (fun i => if filter i then 0 else un i) n.
Proof.
induction n.
- simpl. destruct (filter O).
+ symmetry; apply CRplus_0_r.
+ symmetry. apply CRplus_0_l.
- simpl. rewrite IHn. clear IHn. destruct (filter (S n)).
+ do 2 rewrite CRplus_assoc. apply CRplus_morph.
* reflexivity.
* rewrite CRplus_comm. apply CRplus_morph.
-- reflexivity.
-- rewrite CRplus_0_r.
reflexivity.
+ rewrite CRplus_0_r. rewrite CRplus_assoc. reflexivity.
Qed.
Definition series_cv {R : ConstructiveReals}
(un : nat -> CRcarrier R) (s : CRcarrier R) : Set
:= CR_cv R (CRsum un) s.
Definition series_cv_lim_lt {R : ConstructiveReals}
(un : nat -> CRcarrier R) (x : CRcarrier R) : Set
:= { l : CRcarrier R & prod (series_cv un l) (l < x) }.
Definition series_cv_le_lim {R : ConstructiveReals}
(x : CRcarrier R) (un : nat -> CRcarrier R) : Set
:= { l : CRcarrier R & prod (series_cv un l) (x <= l) }.
Lemma series_cv_maj : forall {R : ConstructiveReals}
(un vn : nat -> CRcarrier R) (s : CRcarrier R),
(forall n:nat, CRabs R (un n) <= vn n)
-> series_cv vn s
-> { l : CRcarrier R & prod (series_cv un l) (l <= s) }.
Proof.
intros. destruct (CR_complete R (CRsum un)).
- intros n.
specialize (H0 (2*n)%positive) as [N maj].
exists N. intros i j H0 H1.
apply (CRle_trans _ (CRsum vn (max i j) - CRsum vn (min i j))).
+ apply Abs_sum_maj. apply H.
+ setoid_replace (CRsum vn (max i j) - CRsum vn (min i j))
with (CRabs R (CRsum vn (max i j) - (CRsum vn (min i j)))).
* setoid_replace (CRsum vn (Init.Nat.max i j) - CRsum vn (Init.Nat.min i j))
with (CRsum vn (Init.Nat.max i j) - s - (CRsum vn (Init.Nat.min i j) - s)).
-- apply (CRle_trans _ _ _ (CRabs_triang _ _)).
setoid_replace (1#n)%Q with ((1#2*n) + (1#2*n))%Q.
++ rewrite CR_of_Q_plus.
apply CRplus_le_compat.
** apply maj. apply (Nat.le_trans _ i). { assumption. } apply Nat.le_max_l.
** rewrite CRabs_opp. apply maj.
apply Nat.min_case.
{ apply (Nat.le_trans _ i). - assumption. - apply Nat.le_refl. }
assumption.
++ rewrite Qinv_plus_distr. reflexivity.
-- unfold CRminus. rewrite CRplus_assoc. apply CRplus_morph.
++ reflexivity.
++ rewrite CRopp_plus_distr, CRopp_involutive.
rewrite CRplus_comm, CRplus_assoc, CRplus_opp_r, CRplus_0_r.
reflexivity.
* rewrite CRabs_right.
-- reflexivity.
-- rewrite <- (CRplus_opp_r (CRsum vn (Init.Nat.min i j))).
apply CRplus_le_compat.
++ apply pos_sum_more.
** intros. apply (CRle_trans _ (CRabs R (un k))), H.
apply CRabs_pos.
** apply (Nat.le_trans _ i), Nat.le_max_l. apply Nat.le_min_l.
++ apply CRle_refl.
- exists x. split.
+ assumption.
(* x <= s *)
+ apply (CRplus_le_reg_r (-x)). rewrite CRplus_opp_r.
apply (CR_cv_bound_down (fun n => CRsum vn n - CRsum un n) _ _ 0).
* intros. rewrite <- (CRplus_opp_r (CRsum un n)).
apply CRplus_le_compat.
-- apply sum_Rle.
intros. apply (CRle_trans _ (CRabs R (un k))).
++ apply CRle_abs.
++ apply H.
-- apply CRle_refl.
* apply CR_cv_plus.
-- assumption.
-- apply CR_cv_opp. assumption.
Qed.
Lemma series_cv_abs_lt
: forall {R : ConstructiveReals} (un vn : nat -> CRcarrier R) (l : CRcarrier R),
(forall n:nat, CRabs R (un n) <= vn n)
-> series_cv_lim_lt vn l
-> series_cv_lim_lt un l.
Proof.
intros. destruct H0 as [x [H0 H1]].
destruct (series_cv_maj un vn x H H0) as [x0 H2].
exists x0. split.
- apply H2.
- apply (CRle_lt_trans _ x).
+ apply H2.
+ apply H1.
Qed.
Definition series_cv_abs {R : ConstructiveReals} (u : nat -> CRcarrier R)
: CR_cauchy R (CRsum (fun n => CRabs R (u n)))
-> { l : CRcarrier R & series_cv u l }.
Proof.
intros. apply CR_complete in H. destruct H.
destruct (series_cv_maj u (fun k => CRabs R (u k)) x).
- intro n. apply CRle_refl.
- assumption.
- exists x0. apply p.
Qed.
Lemma series_cv_unique :
forall {R : ConstructiveReals} (Un:nat -> CRcarrier R) (l1 l2:CRcarrier R),
series_cv Un l1 -> series_cv Un l2 -> l1 == l2.
Proof.
intros. apply (CR_cv_unique (CRsum Un)); assumption.
Qed.
Lemma series_cv_abs_eq
: forall {R : ConstructiveReals} (u : nat -> CRcarrier R) (a : CRcarrier R)
(cau : CR_cauchy R (CRsum (fun n => CRabs R (u n)))),
series_cv u a
-> (a == (let (l,_):= series_cv_abs u cau in l))%ConstructiveReals.
Proof.
intros. destruct (series_cv_abs u cau).
apply (series_cv_unique u).
- exact H.
- exact s.
Qed.
Lemma series_cv_abs_cv
: forall {R : ConstructiveReals} (u : nat -> CRcarrier R)
(cau : CR_cauchy R (CRsum (fun n => CRabs R (u n)))),
series_cv u (let (l,_):= series_cv_abs u cau in l).
Proof.
intros. destruct (series_cv_abs u cau). exact s.
Qed.
Lemma series_cv_opp : forall {R : ConstructiveReals}
(s : CRcarrier R) (u : nat -> CRcarrier R),
series_cv u s
-> series_cv (fun n => - u n) (- s).
Proof.
intros. intros p. specialize (H p) as [N H].
exists N. intros n H0.
setoid_replace (CRsum (fun n0 : nat => - u n0) n - - s)
with (-(CRsum (fun n0 : nat => u n0) n - s)).
- rewrite CRabs_opp.
apply H, H0.
- unfold CRminus.
rewrite sum_opp. rewrite CRopp_plus_distr. reflexivity.
Qed.
Lemma series_cv_scale : forall {R : ConstructiveReals}
(a : CRcarrier R) (s : CRcarrier R) (u : nat -> CRcarrier R),
series_cv u s
-> series_cv (fun n => (u n) * a) (s * a).
Proof.
intros.
apply (CR_cv_eq _ (fun n => CRsum u n * a)).
- intro n. rewrite sum_scale. reflexivity.
- apply CR_cv_scale, H.
Qed.
Lemma series_cv_plus : forall {R : ConstructiveReals}
(u v : nat -> CRcarrier R) (s t : CRcarrier R),
series_cv u s
-> series_cv v t
-> series_cv (fun n => u n + v n) (s + t).
Proof.
intros. apply (CR_cv_eq _ (fun n => CRsum u n + CRsum v n)).
- intro n. symmetry. apply sum_plus.
- apply CR_cv_plus.
+ exact H.
+ exact H0.
Qed.
Lemma series_cv_minus : forall {R : ConstructiveReals}
(u v : nat -> CRcarrier R) (s t : CRcarrier R),
series_cv u s
-> series_cv v t
-> series_cv (fun n => u n - v n) (s - t).
Proof.
intros. apply (CR_cv_eq _ (fun n => CRsum u n - CRsum v n)).
- intro n. symmetry. unfold CRminus. rewrite sum_plus.
rewrite sum_opp. reflexivity.
- apply CR_cv_plus.
+ exact H.
+ apply CR_cv_opp. exact H0.
Qed.
Lemma series_cv_nonneg : forall {R : ConstructiveReals}
(u : nat -> CRcarrier R) (s : CRcarrier R),
(forall n:nat, 0 <= u n) -> series_cv u s -> 0 <= s.
Proof.
intros. apply (CRle_trans 0 (CRsum u 0)).
- apply H.
- apply (growing_ineq (CRsum u)).
+ intro n. simpl.
rewrite <- CRplus_0_r. apply CRplus_le_compat.
* rewrite CRplus_0_r. apply CRle_refl.
* apply H.
+ apply H0.
Qed.
Lemma series_cv_eq : forall {R : ConstructiveReals}
(u v : nat -> CRcarrier R) (s : CRcarrier R),
(forall n:nat, u n == v n)
-> series_cv u s
-> series_cv v s.
Proof.
intros. intros p. specialize (H0 p). destruct H0 as [N H0].
exists N. intros. unfold CRminus.
rewrite <- (CRsum_eq u).
- apply H0, H1.
- intros. apply H.
Qed.
Lemma series_cv_remainder_maj : forall {R : ConstructiveReals} (u : nat -> CRcarrier R)
(s eps : CRcarrier R)
(N : nat),
series_cv u s
-> 0 < eps
-> (forall n:nat, 0 <= u n)
-> CRabs R (CRsum u N - s) <= eps
-> forall n:nat, CRsum (fun k=> u (N + S k)%nat) n <= eps.
Proof.
intros. pose proof (sum_assoc u N n).
rewrite <- (CRsum_eq (fun k : nat => u (S N + k)%nat)).
- apply (CRplus_le_reg_l (CRsum u N)). rewrite <- H3.
apply (CRle_trans _ s).
+ apply growing_ineq.
2: apply H.
intro k. simpl. rewrite <- CRplus_0_r, CRplus_assoc.
apply CRplus_le_compat_l. rewrite CRplus_0_l. apply H1.
+ rewrite CRabs_minus_sym in H2.
rewrite CRplus_comm. apply (CRplus_le_reg_r (-CRsum u N)).
rewrite CRplus_assoc. rewrite CRplus_opp_r. rewrite CRplus_0_r.
apply (CRle_trans _ (CRabs R (s - CRsum u N))).
* apply CRle_abs.
* assumption.
- intros. rewrite Nat.add_succ_r. reflexivity.
Qed.
Lemma series_cv_abs_remainder : forall {R : ConstructiveReals} (u : nat -> CRcarrier R)
(s sAbs : CRcarrier R)
(n : nat),
series_cv u s
-> series_cv (fun n => CRabs R (u n)) sAbs
-> CRabs R (CRsum u n - s)
<= sAbs - CRsum (fun n => CRabs R (u n)) n.
Proof.
intros.
apply (CR_cv_le (fun N => CRabs R (CRsum u n - (CRsum u (n + N))))
(fun N => CRsum (fun n : nat => CRabs R (u n)) (n + N)
- CRsum (fun n : nat => CRabs R (u n)) n)).
- intro N. destruct N.
+ rewrite Nat.add_0_r. unfold CRminus.
rewrite CRplus_opp_r. rewrite CRplus_opp_r.
rewrite CRabs_right.
* apply CRle_refl.
* apply CRle_refl.
+ rewrite Nat.add_succ_r.
replace (S (n + N)) with (S n + N)%nat. 2: reflexivity.
unfold CRminus. rewrite sum_assoc. rewrite sum_assoc.
rewrite CRopp_plus_distr.
rewrite <- CRplus_assoc, CRplus_opp_r, CRplus_0_l, CRabs_opp.
rewrite CRplus_comm, <- CRplus_assoc, CRplus_opp_l.
rewrite CRplus_0_l. apply multiTriangleIneg.
- apply CR_cv_dist_cont. intros eps.
specialize (H eps) as [N lim].
exists N. intros. rewrite Nat.add_comm. apply lim. apply (Nat.le_trans N i).
+ assumption.
+ rewrite <- (Nat.add_0_r i), <- Nat.add_assoc.
apply Nat.add_le_mono_l, Nat.le_0_l.
- apply CR_cv_plus. 2: apply CR_cv_const. intros eps.
specialize (H0 eps) as [N lim].
exists N. intros. rewrite Nat.add_comm. apply lim. apply (Nat.le_trans N i).
+ assumption.
+ rewrite <- (Nat.add_0_r i), <- Nat.add_assoc.
apply Nat.add_le_mono_l, Nat.le_0_l.
Qed.
Lemma series_cv_triangle : forall {R : ConstructiveReals}
(u : nat -> CRcarrier R) (s sAbs : CRcarrier R),
series_cv u s
-> series_cv (fun n => CRabs R (u n)) sAbs
-> CRabs R s <= sAbs.
Proof.
intros.
apply (CR_cv_le (fun n => CRabs R (CRsum u n))
(CRsum (fun n => CRabs R (u n)))).
- intros. apply multiTriangleIneg.
- apply CR_cv_abs_cont. assumption.
- assumption.
Qed.
Lemma series_cv_shift :
forall {R : ConstructiveReals} (f : nat -> CRcarrier R) k l,
series_cv (fun n => f (S k + n)%nat) l
-> series_cv f (l + CRsum f k).
Proof.
intros. intro p. specialize (H p) as [n nmaj].
exists (S k+n)%nat. intros. destruct (Nat.le_exists_sub (S k) i).
- apply (Nat.le_trans _ (S k + 0)).
+ rewrite Nat.add_0_r. apply Nat.le_refl.
+ apply (Nat.le_trans _ (S k + n)).
* apply Nat.add_le_mono_l, Nat.le_0_l.
* exact H.
- destruct H0. subst i.
rewrite Nat.add_comm in H. rewrite <- Nat.add_le_mono_r in H.
specialize (nmaj x H). unfold CRminus.
rewrite Nat.add_comm, (sum_assoc f k x).
setoid_replace (CRsum f k + CRsum (fun k0 : nat => f (S k + k0)%nat) x - (l + CRsum f k))
with (CRsum (fun k0 : nat => f (S k + k0)%nat) x - l).
+ exact nmaj.
+ unfold CRminus. rewrite (CRplus_comm (CRsum f k)).
rewrite CRplus_assoc. apply CRplus_morph.
* reflexivity.
* rewrite CRplus_comm, CRopp_plus_distr, CRplus_assoc.
rewrite CRplus_opp_l, CRplus_0_r. reflexivity.
Qed.
Lemma series_cv_shift' : forall {R : ConstructiveReals}
(un : nat -> CRcarrier R) (s : CRcarrier R) (shift : nat),
series_cv un s
-> series_cv (fun n => un (n+shift)%nat)
(s - match shift with
| O => 0
| S p => CRsum un p
end).
Proof.
intros. destruct shift as [|p].
- unfold CRminus. rewrite CRopp_0. rewrite CRplus_0_r.
apply (series_cv_eq un).
+ intros.
rewrite Nat.add_0_r. reflexivity.
+ apply H.
- apply (CR_cv_eq _ (fun n => CRsum un (n + S p) - CRsum un p)).
+ intros. rewrite Nat.add_comm. unfold CRminus.
rewrite sum_assoc. simpl. rewrite CRplus_comm, <- CRplus_assoc.
rewrite CRplus_opp_l, CRplus_0_l.
apply CRsum_eq. intros. rewrite (Nat.add_comm i). reflexivity.
+ apply CR_cv_plus.
* apply (CR_cv_shift' _ (S p) _ H).
* intros n. exists (Pos.to_nat n). intros.
unfold CRminus. simpl.
rewrite CRopp_involutive, CRplus_opp_l. rewrite CRabs_right.
-- apply CR_of_Q_le. discriminate.
-- apply CRle_refl.
Qed.
Lemma CRmorph_sum : forall {R1 R2 : ConstructiveReals}
(f : @ConstructiveRealsMorphism R1 R2)
(un : nat -> CRcarrier R1) (n : nat),
CRmorph f (CRsum un n) ==
CRsum (fun n0 : nat => CRmorph f (un n0)) n.
Proof.
induction n.
- reflexivity.
- simpl. rewrite CRmorph_plus, IHn. reflexivity.
Qed.
Lemma CRmorph_INR : forall {R1 R2 : ConstructiveReals}
(f : @ConstructiveRealsMorphism R1 R2)
(n : nat),
CRmorph f (INR n) == INR n.
Proof.
induction n.
- apply CRmorph_rat.
- simpl. unfold INR.
rewrite (CRmorph_proper f _ (1 + CR_of_Q R1 (Z.of_nat n # 1))).
+ rewrite CRmorph_plus. unfold INR in IHn.
rewrite IHn. rewrite CRmorph_one, <- CR_of_Q_plus.
apply CR_of_Q_morph. rewrite Qinv_plus_distr.
unfold Qeq, Qnum, Qden. do 2 rewrite Z.mul_1_r.
rewrite Nat2Z.inj_succ. rewrite <- Z.add_1_l. reflexivity.
+ rewrite <- CR_of_Q_plus.
apply CR_of_Q_morph. rewrite Qinv_plus_distr.
unfold Qeq, Qnum, Qden. do 2 rewrite Z.mul_1_r.
rewrite Nat2Z.inj_succ. rewrite <- Z.add_1_l. reflexivity.
Qed.
Lemma CRmorph_series_cv : forall {R1 R2 : ConstructiveReals}
(f : @ConstructiveRealsMorphism R1 R2)
(un : nat -> CRcarrier R1)
(l : CRcarrier R1),
series_cv un l
-> series_cv (fun n => CRmorph f (un n)) (CRmorph f l).
Proof.
intros.
apply (CR_cv_eq _ (fun n => CRmorph f (CRsum un n))).
- intro n. apply CRmorph_sum.
- apply CRmorph_cv, H.
Qed.
|