1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib.Reals Require Import Rdefinitions.
From Stdlib.Reals Require Import Raxioms.
From Stdlib Require Import Rfunctions.
From Stdlib.Reals Require Import RIneq.
From Stdlib Require Import FinFun.
From Stdlib.Logic Require Import ConstructiveEpsilon.
Definition enumeration (A : Type) (u : nat -> A) (v : A -> nat) : Prop :=
(forall x : A, u (v x) = x) /\ (forall n : nat, v (u n) = n).
Definition in_holed_interval (a b hole : R) (u : nat -> R) (n : nat) : Prop :=
Rlt a (u n) /\ Rlt (u n) b /\ u n <> hole.
(* Here we use axiom total_order_T, which is not constructive *)
Lemma in_holed_interval_dec (a b h : R) (u : nat -> R) (n : nat)
: {in_holed_interval a b h u n} + {~in_holed_interval a b h u n}.
Proof.
destruct (total_order_T a (u n)) as [[l|e]|hi].
- destruct (total_order_T b (u n)) as [[lb|eb]|hb].
+ right. intro H. destruct H. destruct H0. apply Rlt_asym in H0. contradiction.
+ subst. right. intro H. destruct H. destruct H0.
pose proof (Rlt_asym (u n) (u n) H0). contradiction.
+ destruct (Req_dec_T h (u n)).
* subst. right. intro H. destruct H. destruct H0.
exact (H1 eq_refl).
* left. split.
-- assumption.
-- split.
++ assumption.
++ intro H. subst.
exact (n0 eq_refl).
- subst. right. intro H. destruct H. pose proof (Rlt_asym (u n) (u n) H). contradiction.
- right. intro H. destruct H. apply Rlt_asym in H. contradiction.
Qed.
Definition point_in_holed_interval (a b h : R) : R :=
if Req_dec_T h (Rdiv (Rplus a b) (INR 2)) then (Rdiv (Rplus a h) (INR 2))
else (Rdiv (Rplus a b) (INR 2)).
Lemma middle_in_interval : forall a b : R, Rlt a b -> (a < (a + b) / INR 2 < b)%R.
Proof.
intros.
assert (twoNotZero: INR 2 <> 0%R).
{ apply not_0_INR. intro abs. inversion abs. }
assert (twoAboveZero : (0 < / INR 2)%R).
{ apply Rinv_0_lt_compat. apply lt_0_INR. apply le_n_S. apply le_S. apply le_n. }
assert (double : forall x : R, Rplus x x = ((INR 2) * x)%R) by
now intros x; rewrite S_INR, INR_1, Rmult_plus_distr_r, Rmult_1_l.
split.
- assert (a + a < a + b)%R. { apply (Rplus_lt_compat_l a a b). assumption. }
rewrite -> double in H0. apply (Rmult_lt_compat_l (/ (INR 2))) in H0.
+ rewrite <- Rmult_assoc in H0. rewrite -> Rinv_l in H0.
* simpl in H0.
rewrite -> Rmult_1_l in H0. rewrite -> Rmult_comm in H0. assumption.
* assumption.
+ assumption.
- assert (b + a < b + b)%R. { apply (Rplus_lt_compat_l b a b). assumption. }
rewrite -> Rplus_comm in H0. rewrite -> double in H0.
apply (Rmult_lt_compat_l (/ (INR 2))) in H0.
+ rewrite <- Rmult_assoc in H0. rewrite -> Rinv_l in H0.
* simpl in H0.
rewrite -> Rmult_1_l in H0. rewrite -> Rmult_comm in H0. assumption.
* assumption.
+ assumption.
Qed.
Lemma point_in_holed_interval_works (a b h : R) :
Rlt a b -> let p := point_in_holed_interval a b h in
Rlt a p /\ Rlt p b /\ p <> h.
Proof.
intros. unfold point_in_holed_interval in p.
pose proof (middle_in_interval a b H). destruct H0.
destruct (Req_dec_T h ((a + b) / INR 2)).
- (* middle hole, p is quarter *) subst.
pose proof (middle_in_interval a ((a + b) / INR 2) H0). destruct H2.
split.
+ assumption.
+ split.
* apply (Rlt_trans p ((a + b) / INR 2)%R).
-- assumption.
-- assumption.
* apply Rlt_not_eq. assumption.
- split.
+ assumption.
+ split.
* assumption.
* intro abs. subst. contradiction.
Qed.
(* An enumeration of R reaches any open interval of R,
extract the first two real numbers in it. *)
Definition first_in_holed_interval (u : nat -> R) (v : R -> nat) (a b h : R)
: enumeration R u v -> Rlt a b
-> { n : nat | in_holed_interval a b h u n
/\ forall k : nat, in_holed_interval a b h u k -> n <= k }.
Proof.
intros. apply epsilon_smallest.
- apply (in_holed_interval_dec a b h u).
- exists (v (point_in_holed_interval a b h)).
destruct H. unfold in_holed_interval. rewrite -> H.
apply point_in_holed_interval_works. assumption.
Defined.
Lemma first_in_holed_interval_works (u : nat -> R) (v : R -> nat) (a b h : R)
(pen : enumeration R u v) (plow : Rlt a b) :
let (c,_) := first_in_holed_interval u v a b h pen plow in
forall x:R, Rlt a x -> Rlt x b -> x <> h -> x <> u c -> c < v x.
Proof.
destruct (first_in_holed_interval u v a b h pen plow) as [c [_ beyond]].
destruct pen as [uv _]. intros x H H0 H1 x_uc.
assert (ihi : in_holed_interval a b h u (v x)).
{ split.
- rewrite -> uv. assumption.
- rewrite -> uv. split; assumption. }
destruct (proj1 (Nat.lt_eq_cases _ _) (beyond (v x) ihi)) as [lcvx | ecvx].
- exact lcvx.
- exfalso. apply x_uc. rewrite ecvx. rewrite -> uv. reflexivity.
Qed.
Definition first_two_in_interval (u : nat -> R) (v : R -> nat) (a b : R)
(pen : enumeration R u v) (plow : Rlt a b)
: prod R R :=
let (first_index, pr) := first_in_holed_interval u v a b b pen plow in
let (second_index, pr2) := first_in_holed_interval u v a b (u first_index) pen plow in
if Rle_dec (u first_index) (u second_index) then (u first_index, u second_index)
else (u second_index, u first_index).
Lemma split_couple_eq : forall {a b c d : R}, (a,b) = (c,d) -> a = c /\ b = d.
Proof.
intros. injection H. intros. split.
- subst. reflexivity.
- subst. reflexivity.
Qed.
Lemma first_two_in_interval_works (u : nat -> R) (v : R -> nat) (a b : R)
(pen : enumeration R u v) (plow : Rlt a b) :
let (c,d) := first_two_in_interval u v a b pen plow in
Rlt a c /\ Rlt c b
/\ Rlt a d /\ Rlt d b
/\ Rlt c d
/\ (forall x:R, Rlt a x -> Rlt x b -> x <> c -> x <> d -> v c < v x).
Proof.
intros. destruct (first_two_in_interval u v a b) as [r r0] eqn:ft.
unfold first_two_in_interval in ft.
pose proof (first_in_holed_interval_works u v a b b pen plow) as Wb.
destruct (first_in_holed_interval u v a b b pen plow) as [first_index pr].
pose proof (first_in_holed_interval_works u v a b (u first_index) pen plow) as Wu.
destruct pr as [[H1 [H3 H4]] H2].
destruct (first_in_holed_interval u v a b (u first_index) pen plow)
as [second_index pr2].
destruct pr2 as [[H5 [H7 diff]] H6].
destruct pen as [_ pen2].
destruct (Rle_dec (u first_index) (u second_index)) as [lfs | nlfs].
- destruct (split_couple_eq ft); subst;
repeat (split; [assumption | idtac]); split.
+ destruct (Rle_lt_or_eq_dec _ _ lfs).
* assumption.
* exfalso. apply diff. symmetry. apply e.
+ intros. rewrite -> pen2.
apply Wb; try assumption. apply Rlt_not_eq; assumption.
- destruct (split_couple_eq ft); subst;
repeat (split; [assumption | idtac]); split.
+ apply Rnot_le_lt, nlfs.
+ intros. rewrite -> pen2. apply Wu; assumption.
Qed.
(* If u,v is an enumeration of R, this sequence of open intervals
tears the segment [0,1]. The recursive definition needs the proof that the
previous interval is ordered, hence the type.
The first sequence is increasing, the second decreasing.
The first is below the second.
Therefore the first sequence has a limit, a least upper bound b, that u cannot reach,
which contradicts u (v b) = b. *)
Definition tearing_sequences (u : nat -> R) (v : R -> nat)
: (enumeration R u v) -> nat -> { ab : prod R R | Rlt (fst ab) (snd ab) }.
Proof.
intro pen. apply nat_rec.
- exists (INR 0, INR 1). simpl. apply Rlt_0_1.
- intros n [[a b] pr]. exists (first_two_in_interval u v a b pen pr).
pose proof (first_two_in_interval_works u v a b pen pr).
destruct (first_two_in_interval u v a b pen pr). apply H.
Defined.
Lemma tearing_sequences_projsig (u : nat -> R) (v : R -> nat) (en : enumeration R u v)
(n : nat)
: let (I,pr) := tearing_sequences u v en n in
proj1_sig (tearing_sequences u v en (S n))
= first_two_in_interval u v (fst I) (snd I) en pr.
Proof.
simpl. destruct (tearing_sequences u v en n) as [[a b] pr]. simpl. reflexivity.
Qed.
(* The first tearing sequence in increasing, the second decreasing.
That means the tearing sequences are nested intervals. *)
Lemma tearing_sequences_inc_dec (u : nat -> R) (v : R -> nat) (pen : enumeration R u v)
: forall n : nat,
let I := proj1_sig (tearing_sequences u v pen n) in
let SI := proj1_sig (tearing_sequences u v pen (S n)) in
Rlt (fst I) (fst SI) /\ Rlt (snd SI) (snd I).
Proof.
intro n. simpl. destruct (tearing_sequences u v pen n) as [[a b] pr].
simpl. pose proof (first_two_in_interval_works u v a b pen pr).
destruct (first_two_in_interval u v a b pen pr).
simpl. split.
- destruct H. assumption.
- destruct H as [H1 [H2 [H3 [H4 H5]]]]. assumption.
Qed.
Lemma split_lt_succ : forall n m : nat, lt n (S m) -> lt n m \/ n = m.
Proof.
intros n m. generalize dependent n. induction m.
- intros. destruct n.
+ right. reflexivity.
+ exfalso. inversion H. inversion H1.
- intros. destruct n.
+ left. unfold lt. apply -> Nat.succ_le_mono; apply Nat.le_0_l.
+ apply Nat.lt_succ_lt_pred in H. simpl in H. specialize (IHm n H). destruct IHm.
* left. apply -> Nat.succ_lt_mono. assumption.
* subst. right. reflexivity.
Qed.
Lemma increase_seq_transit (u : nat -> R) :
(forall n : nat, Rlt (u n) (u (S n))) -> (forall n m : nat, n < m -> Rlt (u n) (u m)).
Proof.
intros. induction m.
- intros. inversion H0.
- intros. destruct (split_lt_succ n m H0).
+ apply (Rlt_trans (u n) (u m)).
* apply IHm. assumption.
* apply H.
+ subst. apply H.
Qed.
Lemma decrease_seq_transit (u : nat -> R) :
(forall n : nat, Rlt (u (S n)) (u n)) -> (forall n m : nat, n < m -> Rlt (u m) (u n)).
Proof.
intros. induction m.
- intros. inversion H0.
- intros. destruct (split_lt_succ n m H0).
+ apply (Rlt_trans (u (S m)) (u m)).
* apply H.
* apply IHm. assumption.
+ subst. apply H.
Qed.
(* Either increase the first sequence, or decrease the second sequence,
until n = m and conclude by tearing_sequences_ordered *)
Lemma tearing_sequences_ordered_forall (u : nat -> R) (v : R -> nat)
(pen : enumeration R u v) :
forall n m : nat, let In := proj1_sig (tearing_sequences u v pen n) in
let Im := proj1_sig (tearing_sequences u v pen m) in
Rlt (fst In) (snd Im).
Proof.
intros. destruct (tearing_sequences u v pen n) eqn:tn. simpl in In.
destruct (tearing_sequences u v pen m) eqn:tm. simpl in Im.
destruct (n ?= m) eqn:order.
- apply Nat.compare_eq_iff in order. subst. rewrite -> tm in tn.
inversion tn. subst. assumption.
- apply Nat.compare_lt_iff in order. (* increase first sequence *)
apply (Rlt_trans (fst In) (fst Im)).
+ remember (fun n => fst (proj1_sig (tearing_sequences u v pen n))) as fseq.
pose proof (increase_seq_transit fseq).
assert ((forall n : nat, (fseq n < fseq (S n))%R)).
{ intro n0. rewrite -> Heqfseq. pose proof (tearing_sequences_inc_dec u v pen n0).
destruct (tearing_sequences u v pen (S n0)). simpl.
destruct ((tearing_sequences u v pen n0)). apply H0. }
specialize (H H0). rewrite -> Heqfseq in H. specialize (H n m order).
rewrite -> tn in H. rewrite -> tm in H. simpl in H. apply H.
+ assumption.
- apply Nat.compare_gt_iff in order. (* decrease second sequence *)
apply (Rlt_trans (fst In) (snd In)).
+ assumption.
+ remember (fun n => snd (proj1_sig (tearing_sequences u v pen n))) as sseq.
pose proof (decrease_seq_transit sseq).
assert ((forall n : nat, (sseq (S n) < sseq n)%R)).
{ intro n0. rewrite -> Heqsseq. pose proof (tearing_sequences_inc_dec u v pen n0).
destruct (tearing_sequences u v pen (S n0)). simpl.
destruct ((tearing_sequences u v pen n0)). apply H0. }
specialize (H H0). rewrite -> Heqsseq in H. specialize (H m n order).
rewrite -> tn in H. rewrite -> tm in H. apply H.
Qed.
Definition tearing_elem_fst (u : nat -> R) (v : R -> nat) (pen : enumeration R u v) (x : R)
:= exists n : nat, x = fst (proj1_sig (tearing_sequences u v pen n)).
(* The limit of the first tearing sequence cannot be reached by u *)
Definition torn_number (u : nat -> R) (v : R -> nat) (pen : enumeration R u v) :
{m : R | is_lub (tearing_elem_fst u v pen) m}.
Proof.
intros. assert (bound (tearing_elem_fst u v pen)).
{ exists (INR 1). intros x H0. destruct H0 as [n H0]. subst. left.
apply (tearing_sequences_ordered_forall u v pen n 0). }
apply (completeness (tearing_elem_fst u v pen) H).
exists (INR 0). exists 0. reflexivity.
Defined.
Lemma torn_number_above_first_sequence (u : nat -> R) (v : R -> nat) (en : enumeration R u v)
: forall n : nat, Rlt (fst (proj1_sig (tearing_sequences u v en n)))
(proj1_sig (torn_number u v en)).
Proof.
intros. destruct (torn_number u v en) as [torn i]. simpl.
destruct (Rlt_le_dec (fst (proj1_sig (tearing_sequences u v en n))) torn).
- assumption.
- exfalso.
destruct i. (* Apply the first sequence once to make the inequality strict *)
assert (Rlt torn (fst (proj1_sig (tearing_sequences u v en (S n))))).
{ apply (Rle_lt_trans torn (fst (proj1_sig (tearing_sequences u v en n)))).
- assumption. - apply tearing_sequences_inc_dec. }
clear r. specialize (H (fst (proj1_sig (tearing_sequences u v en (S n))))).
assert (tearing_elem_fst u v en (fst (proj1_sig (tearing_sequences u v en (S n))))).
{ exists (S n). reflexivity. }
specialize (H H2). assert (Rlt torn torn).
{ apply (Rlt_le_trans torn (fst (proj1_sig (tearing_sequences u v en (S n)))));
assumption. }
apply Rlt_irrefl in H3. contradiction.
Qed.
(* The torn number is between both tearing sequences, so it could have been chosen
at each step. *)
Lemma torn_number_below_second_sequence (u : nat -> R) (v : R -> nat)
(en : enumeration R u v) :
forall n : nat, Rlt (proj1_sig (torn_number u v en))
(snd (proj1_sig (tearing_sequences u v en n))).
Proof.
intros. destruct (torn_number u v en) as [torn i]. simpl.
destruct (Rlt_le_dec torn (snd (proj1_sig (tearing_sequences u v en n))))
as [l|h].
- assumption.
- exfalso. (* Apply the second sequence once to make the inequality strict *)
assert (Rlt (snd (proj1_sig (tearing_sequences u v en (S n)))) torn).
{ apply (Rlt_le_trans (snd (proj1_sig (tearing_sequences u v en (S n))))
(snd (proj1_sig (tearing_sequences u v en n))) torn).
- apply (tearing_sequences_inc_dec u v en n). - assumption. }
clear h. (* Then prove snd (tearing_sequences u v (S n)) is an upper bound of the first
sequence. It will yield the contradiction torn < torn. *)
assert (is_upper_bound (tearing_elem_fst u v en)
(snd (proj1_sig (tearing_sequences u v en (S n))))).
{ intros x H0. destruct H0. subst. left. apply tearing_sequences_ordered_forall. }
destruct i. apply H2 in H0.
pose proof (Rle_lt_trans torn (snd (proj1_sig (tearing_sequences u v en (S n)))) torn H0 H).
apply Rlt_irrefl in H3. contradiction.
Qed.
(* Here is the contradiction : the torn number's index is above a sequence
that tends to infinity *)
Lemma limit_index_above_all_indices (u : nat -> R) (v : R -> nat) (en : enumeration R u v) :
forall n : nat, v (fst (proj1_sig (tearing_sequences u v en (S n))))
< v (proj1_sig (torn_number u v en)).
Proof.
intros. simpl. destruct (tearing_sequences u v en n) as [[r r0] H] eqn:tear.
(* The torn number was not chosen, so its index is above *)
simpl.
pose proof (first_two_in_interval_works u v r r0 en H).
destruct (first_two_in_interval u v r r0) eqn:ft. simpl.
assert (proj1_sig (tearing_sequences u v en (S n)) = (r1, r2)).
{ simpl. rewrite -> tear. assumption. }
apply H0.
- pose proof (torn_number_above_first_sequence u v en n). rewrite -> tear in H2. assumption.
- pose proof (torn_number_below_second_sequence u v en n). rewrite -> tear in H2. assumption.
- pose proof (torn_number_above_first_sequence u v en (S n)). rewrite -> H1 in H2. simpl in H2.
intro H5. subst. apply Rlt_irrefl in H2. contradiction.
- pose proof (torn_number_below_second_sequence u v en (S n)). rewrite -> H1 in H2. simpl in H2.
intro H5. subst. apply Rlt_irrefl in H2. contradiction.
Qed.
(* The indices increase because each time the minimum index is chosen *)
Lemma first_indices_increasing (u : nat -> R) (v : R -> nat) (H : enumeration R u v)
: forall n : nat, n <> 0 -> v (fst (proj1_sig (tearing_sequences u v H n)))
< v (fst (proj1_sig (tearing_sequences u v H (S n)))).
Proof.
intros. destruct n.
- contradiction.
- (* The n+1 and n+2 intervals are drawn from the n-th interval, which we note r r0 *)
destruct (tearing_sequences u v H n) as [[r r0] H1] eqn:In. simpl in H1.
(* Draw the n+1 interval *)
destruct (tearing_sequences u v H (S n)) as [[r1 r2] H2] eqn:ISn. simpl in H2.
(* Draw the n+2 interval *)
destruct (tearing_sequences u v H (S (S n))) as [[r3 r4] H3] eqn:ISSn. simpl in H3.
simpl.
assert ((r1,r2) = first_two_in_interval u v r r0 H H1).
{ simpl in ISn. rewrite -> In in ISn. inversion ISn. reflexivity. }
assert ((r3,r4) = first_two_in_interval u v r1 r2 H H2).
{ pose proof (tearing_sequences_projsig u v H (S n)). rewrite -> ISn in H5.
rewrite -> ISSn in H5. apply H5. }
pose proof (first_two_in_interval_works u v r r0 H H1) as firstChoiceWorks.
rewrite <- H4 in firstChoiceWorks.
destruct firstChoiceWorks as [fth [fth0 [fth1 [fth2 [fth3 fth4]]]]].
(* to prove the n+2 left bound in between r1 and r2 *)
pose proof (first_two_in_interval_works u v r1 r2 H H2).
rewrite <- H5 in H6. destruct H6 as [H6 [H7 [H8 [H9 [H10 H11]]]]]. apply fth4.
+ apply (Rlt_trans r r1); assumption.
+ apply (Rlt_trans r3 r2); assumption.
+ intro abs. subst. apply Rlt_irrefl in H6. contradiction.
+ intro abs. subst. apply Rlt_irrefl in H7. contradiction.
Qed.
Theorem R_uncountable : forall u : nat -> R, ~Bijective u.
Proof.
intros u [v [H3 H4]]. pose proof (conj H4 H3) as H.
assert (forall n : nat, n + v (fst (proj1_sig (tearing_sequences u v H 1)))
<= v (fst (proj1_sig (tearing_sequences u v H (S n))))).
{ induction n.
- simpl. apply Nat.le_refl.
- apply (Nat.le_trans (S n + v (fst (proj1_sig (tearing_sequences u v H 1))))
(S (v (fst (proj1_sig (tearing_sequences u v H (S n))))))).
+ simpl. apply -> Nat.succ_le_mono. assumption.
+ apply first_indices_increasing.
intro H1. discriminate. }
assert (v (proj1_sig (torn_number u v H)) + v (fst (proj1_sig (tearing_sequences u v H 1)))
< v (proj1_sig (torn_number u v H))).
{ pose proof (limit_index_above_all_indices u v H (v (proj1_sig (torn_number u v H)))).
specialize (H0 (v (proj1_sig (torn_number u v H)))).
apply (Nat.le_lt_trans (v (proj1_sig (torn_number u v H))
+ v (fst (proj1_sig (tearing_sequences u v H 1))))
(v (fst (proj1_sig (tearing_sequences u v H (S (v (proj1_sig (torn_number u v H))))))))).
- assumption.
- assumption. }
assert (forall n m : nat, ~(n + m < n)).
{ induction n.
- intros. intro H2. inversion H2.
- intro m. intro H2. simpl in H2.
apply Nat.lt_succ_lt_pred in H2. simpl in H2. apply IHn in H2. contradiction. }
apply H2 in H1. contradiction.
Qed.
|