1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
(** * Some properties of the operators on relations *)
(************************************************************************)
(** * Initial version by Bruno Barras *)
(************************************************************************)
From Stdlib Require Import Relation_Definitions.
From Stdlib Require Import Relation_Operators.
Section Properties.
Arguments clos_refl [A] R x _.
Arguments clos_refl_trans [A] R x _.
Arguments clos_refl_trans_1n [A] R x _.
Arguments clos_refl_trans_n1 [A] R x _.
Arguments clos_refl_sym_trans [A] R _ _.
Arguments clos_refl_sym_trans_1n [A] R x _.
Arguments clos_refl_sym_trans_n1 [A] R x _.
Arguments clos_trans [A] R x _.
Arguments clos_trans_1n [A] R x _.
Arguments clos_trans_n1 [A] R x _.
Arguments inclusion [A] R1 R2.
Arguments preorder [A] R.
Variable A : Type.
Variable R : relation A.
Section Clos_Refl_Trans.
#[warning="-notation-incompatible-prefix"]
Local Notation "R *" := (clos_refl_trans R)
(at level 8, no associativity, format "R *").
(** Correctness of the reflexive-transitive closure operator *)
Lemma clos_rt_is_preorder : preorder R*.
Proof.
apply Build_preorder.
- exact (rt_refl A R).
- exact (rt_trans A R).
Qed.
(** Idempotency of the reflexive-transitive closure operator *)
Lemma clos_rt_idempotent : inclusion (R*)* R*.
Proof.
red.
induction 1 as [x y H|x|x y z H IH H0 IH0]; auto with sets.
apply rt_trans with y; auto with sets.
Qed.
End Clos_Refl_Trans.
Section Clos_Refl_Sym_Trans.
(** Reflexive-transitive closure is included in the
reflexive-symmetric-transitive closure *)
Lemma clos_rt_clos_rst :
inclusion (clos_refl_trans R) (clos_refl_sym_trans R).
Proof.
red.
induction 1 as [x y H|x|x y z H IH H0 IH0]; auto with sets.
apply rst_trans with y; auto with sets.
Qed.
(** Reflexive closure is included in the
reflexive-transitive closure *)
Lemma clos_r_clos_rt :
inclusion (clos_refl R) (clos_refl_trans R).
Proof.
induction 1 as [? ?| ].
- constructor; auto.
- constructor 2.
Qed.
Lemma clos_t_clos_rt :
inclusion (clos_trans R) (clos_refl_trans R).
Proof.
induction 1 as [? ?| ].
- constructor. auto.
- econstructor 3; eassumption.
Qed.
Lemma clos_rt_t : forall x y z,
clos_refl_trans R x y -> clos_trans R y z ->
clos_trans R x z.
Proof.
induction 1 as [b d H1|b|a b d H1 H2 IH1 IH2]; auto.
intro H. apply (t_trans _ _ _ d); auto.
constructor. auto.
Qed.
(** Correctness of the reflexive-symmetric-transitive closure *)
Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans R).
Proof.
apply Build_equivalence.
- exact (rst_refl A R).
- exact (rst_trans A R).
- exact (rst_sym A R).
Qed.
(** Idempotency of the reflexive-symmetric-transitive closure operator *)
Lemma clos_rst_idempotent :
inclusion (clos_refl_sym_trans (clos_refl_sym_trans R))
(clos_refl_sym_trans R).
Proof.
red.
induction 1 as [x y H|x|x y H IH|x y z H IH H0 IH0]; auto with sets.
apply rst_trans with y; auto with sets.
Qed.
End Clos_Refl_Sym_Trans.
Section Equivalences.
(** *** Equivalences between the different definition of the reflexive,
symmetric, transitive closures *)
(** *** Contributed by P. Castéran *)
(** Direct transitive closure vs left-step extension *)
Lemma clos_t1n_trans : forall x y, clos_trans_1n R x y -> clos_trans R x y.
Proof.
induction 1 as [x y H|x y z H H0 IH0].
- left; assumption.
- right with y; auto.
left; auto.
Qed.
Lemma clos_trans_t1n : forall x y, clos_trans R x y -> clos_trans_1n R x y.
Proof.
induction 1 as [x y H|x y z H IHclos_trans1 H0 IHclos_trans2].
- left; assumption.
- generalize IHclos_trans2; clear IHclos_trans2.
induction IHclos_trans1 as [x y H1|x y z0 H1 ? IHIHclos_trans1].
+ right with y; auto.
+ right with y; auto.
eapply IHIHclos_trans1; auto.
apply clos_t1n_trans; auto.
Qed.
Lemma clos_trans_t1n_iff : forall x y,
clos_trans R x y <-> clos_trans_1n R x y.
Proof.
split.
- apply clos_trans_t1n.
- apply clos_t1n_trans.
Qed.
(** Direct transitive closure vs right-step extension *)
Lemma clos_tn1_trans : forall x y, clos_trans_n1 R x y -> clos_trans R x y.
Proof.
induction 1 as [y H|y z H H0 ?].
- left; assumption.
- right with y; auto.
left; assumption.
Qed.
Lemma clos_trans_tn1 : forall x y, clos_trans R x y -> clos_trans_n1 R x y.
Proof.
induction 1 as [x y H|x y z H IHclos_trans1 H0 IHclos_trans2].
- left; assumption.
- elim IHclos_trans2.
+ intro y0; right with y.
* auto.
* auto.
+ intro y0; intros.
right with y0; auto.
Qed.
Lemma clos_trans_tn1_iff : forall x y,
clos_trans R x y <-> clos_trans_n1 R x y.
Proof.
split.
- apply clos_trans_tn1.
- apply clos_tn1_trans.
Qed.
(** Direct reflexive-transitive closure is equivalent to
transitivity by left-step extension *)
Lemma clos_rt1n_step : forall x y, R x y -> clos_refl_trans_1n R x y.
Proof.
intros x y H.
right with y;[assumption|left].
Qed.
Lemma clos_rtn1_step : forall x y, R x y -> clos_refl_trans_n1 R x y.
Proof.
intros x y H.
right with x;[assumption|left].
Qed.
Lemma clos_rt1n_rt : forall x y,
clos_refl_trans_1n R x y -> clos_refl_trans R x y.
Proof.
induction 1 as [|x y z].
- constructor 2.
- constructor 3 with y; auto.
constructor 1; auto.
Qed.
Lemma clos_rt_rt1n : forall x y,
clos_refl_trans R x y -> clos_refl_trans_1n R x y.
Proof.
induction 1 as [| |x y z H IHclos_refl_trans1 H0 IHclos_refl_trans2].
- apply clos_rt1n_step; assumption.
- left.
- generalize IHclos_refl_trans2; clear IHclos_refl_trans2;
induction IHclos_refl_trans1 as [|x y z0 H1 ? IH]; auto.
right with y; auto.
eapply IH; auto.
apply clos_rt1n_rt; auto.
Qed.
Lemma clos_rt_rt1n_iff : forall x y,
clos_refl_trans R x y <-> clos_refl_trans_1n R x y.
Proof.
split.
- apply clos_rt_rt1n.
- apply clos_rt1n_rt.
Qed.
(** Direct reflexive-transitive closure is equivalent to
transitivity by right-step extension *)
Lemma clos_rtn1_rt : forall x y,
clos_refl_trans_n1 R x y -> clos_refl_trans R x y.
Proof.
induction 1 as [|y z].
- constructor 2.
- constructor 3 with y; auto.
constructor 1; assumption.
Qed.
Lemma clos_rt_rtn1 : forall x y,
clos_refl_trans R x y -> clos_refl_trans_n1 R x y.
Proof.
induction 1 as [| |x y z H1 IH1 H2 IH2].
- apply clos_rtn1_step; auto.
- left.
- elim IH2; auto.
intro y0; intros.
right with y0; auto.
Qed.
Lemma clos_rt_rtn1_iff : forall x y,
clos_refl_trans R x y <-> clos_refl_trans_n1 R x y.
Proof.
split.
- apply clos_rt_rtn1.
- apply clos_rtn1_rt.
Qed.
(** Induction on the left transitive step *)
Lemma clos_refl_trans_ind_left :
forall (x:A) (P:A -> Prop), P x ->
(forall y z:A, clos_refl_trans R x y -> P y -> R y z -> P z) ->
forall z:A, clos_refl_trans R x z -> P z.
Proof.
intros x P H H0 z H1.
revert H H0.
induction H1 as [x| |x y z H1 IH1 H2 IH2]; intros HP HIS; auto with sets.
- apply HIS with x; auto with sets.
- apply IH2.
+ apply IH1; auto with sets.
+ intro y0; intros;
apply HIS with y0; auto with sets.
apply rt_trans with y; auto with sets.
Qed.
(** Induction on the right transitive step *)
Lemma rt1n_ind_right : forall (P : A -> Prop) (z:A),
P z ->
(forall x y, R x y -> clos_refl_trans_1n R y z -> P y -> P x) ->
forall x, clos_refl_trans_1n R x z -> P x.
intros P z H H0 x; induction 1 as [|x y z]; auto.
apply H0 with y; auto.
Qed.
Lemma clos_refl_trans_ind_right : forall (P : A -> Prop) (z:A),
P z ->
(forall x y, R x y -> P y -> clos_refl_trans R y z -> P x) ->
forall x, clos_refl_trans R x z -> P x.
intros P z Hz IH x Hxz.
apply clos_rt_rt1n_iff in Hxz.
elim Hxz using rt1n_ind_right; auto.
clear x Hxz.
intros x y Hxy Hyz Hy.
apply clos_rt_rt1n_iff in Hyz.
eauto.
Qed.
(** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric left-step extension *)
Lemma clos_rst1n_rst : forall x y,
clos_refl_sym_trans_1n R x y -> clos_refl_sym_trans R x y.
Proof.
induction 1 as [|x y z H].
- constructor 2.
- constructor 4 with y; auto.
case H;[constructor 1|constructor 3; constructor 1]; auto.
Qed.
Lemma clos_rst1n_trans : forall x y z, clos_refl_sym_trans_1n R x y ->
clos_refl_sym_trans_1n R y z -> clos_refl_sym_trans_1n R x z.
induction 1 as [|x y z0].
- auto.
- intros; right with y; eauto.
Qed.
Lemma clos_rst1n_sym : forall x y, clos_refl_sym_trans_1n R x y ->
clos_refl_sym_trans_1n R y x.
Proof.
intros x y H; elim H.
- constructor 1.
- intros x0 y0 z D H0 H1; apply clos_rst1n_trans with y0; auto.
right with x0.
+ tauto.
+ left.
Qed.
Lemma clos_rst_rst1n : forall x y,
clos_refl_sym_trans R x y -> clos_refl_sym_trans_1n R x y.
induction 1 as [x y| | |].
- constructor 2 with y; auto.
constructor 1.
- constructor 1.
- apply clos_rst1n_sym; auto.
- eapply clos_rst1n_trans; eauto.
Qed.
Lemma clos_rst_rst1n_iff : forall x y,
clos_refl_sym_trans R x y <-> clos_refl_sym_trans_1n R x y.
Proof.
split.
- apply clos_rst_rst1n.
- apply clos_rst1n_rst.
Qed.
(** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric right-step extension *)
Lemma clos_rstn1_rst : forall x y,
clos_refl_sym_trans_n1 R x y -> clos_refl_sym_trans R x y.
Proof.
induction 1 as [|y z H].
- constructor 2.
- constructor 4 with y; auto.
case H;[constructor 1|constructor 3; constructor 1]; auto.
Qed.
Lemma clos_rstn1_trans : forall x y z, clos_refl_sym_trans_n1 R x y ->
clos_refl_sym_trans_n1 R y z -> clos_refl_sym_trans_n1 R x z.
Proof.
intros x y z H1 H2.
induction H2 as [|y0 z].
- auto.
- right with y0; eauto.
Qed.
Lemma clos_rstn1_sym : forall x y, clos_refl_sym_trans_n1 R x y ->
clos_refl_sym_trans_n1 R y x.
Proof.
intros x y H; elim H.
- constructor 1.
- intros y0 z D H0 H1. apply clos_rstn1_trans with y0; auto.
right with z.
+ tauto.
+ left.
Qed.
Lemma clos_rst_rstn1 : forall x y,
clos_refl_sym_trans R x y -> clos_refl_sym_trans_n1 R x y.
Proof.
induction 1 as [x| | |].
- constructor 2 with x; auto.
constructor 1.
- constructor 1.
- apply clos_rstn1_sym; auto.
- eapply clos_rstn1_trans; eauto.
Qed.
Lemma clos_rst_rstn1_iff : forall x y,
clos_refl_sym_trans R x y <-> clos_refl_sym_trans_n1 R x y.
Proof.
split.
- apply clos_rst_rstn1.
- apply clos_rstn1_rst.
Qed.
End Equivalences.
Lemma clos_trans_transp_permute : forall x y,
transp _ (clos_trans R) x y <-> clos_trans (transp _ R) x y.
Proof.
split; induction 1;
(apply t_step; assumption) || eapply t_trans; eassumption.
Qed.
End Properties.
(* begin hide *)
(* Compatibility *)
Notation trans_tn1 := clos_trans_tn1 (only parsing).
Notation tn1_trans := clos_tn1_trans (only parsing).
Notation tn1_trans_equiv := clos_trans_tn1_iff (only parsing).
Notation trans_t1n := clos_trans_t1n (only parsing).
Notation t1n_trans := clos_t1n_trans (only parsing).
Notation t1n_trans_equiv := clos_trans_t1n_iff (only parsing).
Notation R_rtn1 := clos_rtn1_step (only parsing).
Notation trans_rt1n := clos_rt_rt1n (only parsing).
Notation rt1n_trans := clos_rt1n_rt (only parsing).
Notation rt1n_trans_equiv := clos_rt_rt1n_iff (only parsing).
Notation R_rt1n := clos_rt1n_step (only parsing).
Notation trans_rtn1 := clos_rt_rtn1 (only parsing).
Notation rtn1_trans := clos_rtn1_rt (only parsing).
Notation rtn1_trans_equiv := clos_rt_rtn1_iff (only parsing).
Notation rts1n_rts := clos_rst1n_rst (only parsing).
Notation rts_1n_trans := clos_rst1n_trans (only parsing).
Notation rts1n_sym := clos_rst1n_sym (only parsing).
Notation rts_rts1n := clos_rst_rst1n (only parsing).
Notation rts_rts1n_equiv := clos_rst_rst1n_iff (only parsing).
Notation rtsn1_rts := clos_rstn1_rst (only parsing).
Notation rtsn1_trans := clos_rstn1_trans (only parsing).
Notation rtsn1_sym := clos_rstn1_sym (only parsing).
Notation rts_rtsn1 := clos_rst_rstn1 (only parsing).
Notation rts_rtsn1_equiv := clos_rst_rstn1_iff (only parsing).
(* end hide *)
|