1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** This file is deprecated, for a tree on list, use [Mergesort.v]. *)
(** A development of Treesort on Heap trees. It has an average
complexity of O(n.log n) but of O(n²) in the worst case (e.g. if
the list is already sorted) *)
(* G. Huet 1-9-95 uses Multiset *)
From Stdlib Require Import List Multiset PermutSetoid Relations Sorting.
#[local]
Set Warnings "-deprecated".
Section defs.
(** * Trees and heap trees *)
(** ** Definition of trees over an ordered set *)
Variable A : Type.
Variable leA : relation A.
Variable eqA : relation A.
Let gtA (x y:A) := ~ leA x y.
Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.
#[local]
Hint Resolve leA_refl : core.
#[local]
Hint Immediate eqA_dec leA_dec leA_antisym : core.
Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.
Inductive Tree :=
| Tree_Leaf : Tree
| Tree_Node : A -> Tree -> Tree -> Tree.
(** [a] is lower than a Tree [T] if [T] is a Leaf
or [T] is a Node holding [b>a] *)
#[deprecated(since="8.3", note="Use mergesort.v")]
Definition leA_Tree (a:A) (t:Tree) :=
match t with
| Tree_Leaf => True
| Tree_Node b T1 T2 => leA a b
end.
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf.
Proof.
simpl; auto with datatypes.
Qed.
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma leA_Tree_Node :
forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D).
Proof.
simpl; auto with datatypes.
Qed.
(** ** The heap property *)
Inductive is_heap : Tree -> Prop :=
| nil_is_heap : is_heap Tree_Leaf
| node_is_heap :
forall (a:A) (T1 T2:Tree),
leA_Tree a T1 ->
leA_Tree a T2 ->
is_heap T1 -> is_heap T2 -> is_heap (Tree_Node a T1 T2).
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma invert_heap :
forall (a:A) (T1 T2:Tree),
is_heap (Tree_Node a T1 T2) ->
leA_Tree a T1 /\ leA_Tree a T2 /\ is_heap T1 /\ is_heap T2.
Proof.
intros; inversion H; auto with datatypes.
Qed.
(* This lemma ought to be generated automatically by the Inversion tools *)
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma is_heap_rect :
forall P:Tree -> Type,
P Tree_Leaf ->
(forall (a:A) (T1 T2:Tree),
leA_Tree a T1 ->
leA_Tree a T2 ->
is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
forall T:Tree, is_heap T -> P T.
Proof.
simple induction T; auto with datatypes.
intros a G PG D PD PN.
elim (invert_heap a G D); auto with datatypes.
intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
apply X0; auto with datatypes.
Qed.
(* This lemma ought to be generated automatically by the Inversion tools *)
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma is_heap_rec :
forall P:Tree -> Set,
P Tree_Leaf ->
(forall (a:A) (T1 T2:Tree),
leA_Tree a T1 ->
leA_Tree a T2 ->
is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
forall T:Tree, is_heap T -> P T.
Proof.
simple induction T; auto with datatypes.
intros a G PG D PD PN.
elim (invert_heap a G D); auto with datatypes.
intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
apply X; auto with datatypes.
Qed.
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma low_trans :
forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T.
Proof.
simple induction T; auto with datatypes.
intros; simpl; apply leA_trans with b; auto with datatypes.
Qed.
(** ** Merging two sorted lists *)
Inductive merge_lem (l1 l2:list A) : Type :=
merge_exist :
forall l:list A,
Sorted leA l ->
meq (list_contents _ eqA_dec l)
(munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2)) ->
(forall a, HdRel leA a l1 -> HdRel leA a l2 -> HdRel leA a l) ->
merge_lem l1 l2.
Import Morphisms.
Instance: Equivalence (@meq A).
Proof. constructor; auto with datatypes. red. apply meq_trans. Defined.
Instance: Proper (@meq A ++> @meq _ ++> @meq _) (@munion A).
Proof. intros x y H x' y' H'. now apply meq_congr. Qed.
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma merge :
forall l1:list A, Sorted leA l1 ->
forall l2:list A, Sorted leA l2 -> merge_lem l1 l2.
Proof.
fix merge 1; intros; destruct l1.
- apply merge_exist with l2; auto with datatypes.
- rename l1 into l.
revert l2 H0. fix merge0 1. intros.
destruct l2 as [|a0 l0].
+ apply merge_exist with (a :: l); simpl; auto with datatypes.
+ induction (leA_dec a a0) as [Hle|Hle].
* (* 1 (leA a a0) *)
apply Sorted_inv in H. destruct H.
destruct (merge l H (a0 :: l0) H0) as [l1 H2 H3 H4].
apply merge_exist with (a :: l1).
-- clear merge merge0.
auto using cons_sort, cons_leA with datatypes.
-- simpl. rewrite H3. now rewrite munion_ass.
-- intros. apply cons_leA.
apply (@HdRel_inv _ leA) with l; trivial with datatypes.
* (* 2 (leA a0 a) *)
apply Sorted_inv in H0. destruct H0.
destruct (merge0 l0 H0) as [l1 H2 H3 H4]. clear merge merge0.
apply merge_exist with (a0 :: l1);
auto using cons_sort, cons_leA with datatypes.
-- simpl; rewrite H3. simpl. setoid_rewrite munion_ass at 1. rewrite munion_comm.
repeat rewrite munion_ass. setoid_rewrite munion_comm at 3. reflexivity.
-- intros. apply cons_leA.
apply (@HdRel_inv _ leA) with l0; trivial with datatypes.
Qed.
(** ** From trees to multisets *)
(** contents of a tree as a multiset *)
(** Nota Bene : In what follows the definition of SingletonBag
in not used. Actually, we could just take as postulate:
[Parameter SingletonBag : A->multiset]. *)
#[deprecated(since="8.3", note="Use mergesort.v")]
Fixpoint contents (t:Tree) : multiset A :=
match t with
| Tree_Leaf => emptyBag
| Tree_Node a t1 t2 =>
munion (contents t1) (munion (contents t2) (singletonBag a))
end.
(** equivalence of two trees is equality of corresponding multisets *)
#[deprecated(since="8.3", note="Use mergesort.v")]
Definition equiv_Tree (t1 t2:Tree) := meq (contents t1) (contents t2).
(** * From lists to sorted lists *)
(** ** Specification of heap insertion *)
Inductive insert_spec (a:A) (T:Tree) : Type :=
insert_exist :
forall T1:Tree,
is_heap T1 ->
meq (contents T1) (munion (contents T) (singletonBag a)) ->
(forall b:A, leA b a -> leA_Tree b T -> leA_Tree b T1) ->
insert_spec a T.
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma insert : forall T:Tree, is_heap T -> forall a:A, insert_spec a T.
Proof.
simple induction 1; intros.
- apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
- simpl; unfold meq, munion; auto using node_is_heap with datatypes.
elim (leA_dec a a0); intros.
+ elim (X a0); intros.
apply insert_exist with (Tree_Node a T2 T0);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
simpl; apply treesort_twist1; trivial with datatypes.
+ elim (X a); intros T3 HeapT3 ConT3 LeA.
apply insert_exist with (Tree_Node a0 T2 T3);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
* apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
-- apply low_trans with a; auto with datatypes.
-- apply LeA; auto with datatypes.
apply low_trans with a; auto with datatypes.
* simpl; apply treesort_twist2; trivial with datatypes.
Qed.
(** ** Building a heap from a list *)
Inductive build_heap (l:list A) : Type :=
heap_exist :
forall T:Tree,
is_heap T ->
meq (list_contents _ eqA_dec l) (contents T) -> build_heap l.
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma list_to_heap : forall l:list A, build_heap l.
Proof.
simple induction l.
- apply (heap_exist nil Tree_Leaf); auto with datatypes.
simpl; unfold meq; exact nil_is_heap.
- simple induction 1.
intros T i m; elim (insert T i a).
intros; apply heap_exist with T1; simpl; auto with datatypes.
apply meq_trans with (munion (contents T) (singletonBag a)).
+ apply meq_trans with (munion (singletonBag a) (contents T)).
* apply meq_right; trivial with datatypes.
* apply munion_comm.
+ apply meq_sym; trivial with datatypes.
Qed.
(** ** Building the sorted list *)
Inductive flat_spec (T:Tree) : Type :=
flat_exist :
forall l:list A,
Sorted leA l ->
(forall a:A, leA_Tree a T -> HdRel leA a l) ->
meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T.
#[deprecated(since="8.3", note="Use mergesort.v")]
Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T.
Proof.
intros T h; elim h; intros.
- apply flat_exist with (nil (A:=A)); auto with datatypes.
- elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2.
elim (merge _ s1 _ s2); intros.
apply flat_exist with (a :: l); simpl; auto with datatypes.
apply meq_trans with
(munion (list_contents _ eqA_dec l1)
(munion (list_contents _ eqA_dec l2) (singletonBag a))).
+ apply meq_congr; auto with datatypes.
+ apply meq_trans with
(munion (singletonBag a)
(munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2))).
* apply munion_rotate.
* apply meq_right; apply meq_sym; trivial with datatypes.
Qed.
(** * Specification of treesort *)
#[deprecated(since="8.3", note="Use mergesort.v")]
Theorem treesort :
forall l:list A,
{m : list A | Sorted leA m & permutation _ eqA_dec l m}.
Proof.
intro l; unfold permutation.
elim (list_to_heap l).
intros.
elim (heap_to_list T); auto with datatypes.
intros.
exists l0; auto with datatypes.
apply meq_trans with (contents T); trivial with datatypes.
Qed.
End defs.
|