1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import Relations Setoid SetoidList List Multiset PermutSetoid Permutation.
Set Implicit Arguments.
(** This file is similar to [PermutSetoid], except that the equality used here
is Coq usual one instead of a setoid equality. In particular, we can then
prove the equivalence between [Permutation.Permutation] and
[PermutSetoid.permutation].
*)
Section Perm.
Variable A : Type.
Hypothesis eq_dec : forall x y:A, {x=y} + {~ x=y}.
Notation permutation := (permutation _ eq_dec).
Notation list_contents := (list_contents _ eq_dec).
(** we can use [multiplicity] to define [In] and [NoDup]. *)
Lemma multiplicity_In :
forall l a, In a l <-> 0 < multiplicity (list_contents l) a.
Proof.
intros; split; intro H.
- eapply In_InA, multiplicity_InA in H; eauto with typeclass_instances.
- eapply multiplicity_InA, InA_alt in H as (y & -> & H); eauto with typeclass_instances.
Qed.
Lemma multiplicity_In_O :
forall l a, ~ In a l -> multiplicity (list_contents l) a = 0.
Proof.
intros l a; rewrite multiplicity_In;
destruct (multiplicity (list_contents l) a); auto.
destruct 1; auto with arith.
Qed.
Lemma multiplicity_In_S :
forall l a, In a l -> multiplicity (list_contents l) a >= 1.
Proof.
intros l a; rewrite multiplicity_In; auto.
Qed.
Lemma multiplicity_NoDup :
forall l, NoDup l <-> (forall a, multiplicity (list_contents l) a <= 1).
Proof.
induction l.
- simpl.
split; auto with arith.
intros; apply NoDup_nil.
- split; simpl.
+ inversion_clear 1.
rewrite IHl in H1.
intros; destruct (eq_dec a a0) as [H2|H2]; simpl; auto.
subst a0.
rewrite multiplicity_In_O; auto.
+ intros; constructor.
* rewrite multiplicity_In.
generalize (H a).
destruct (eq_dec a a) as [H0|H0].
-- destruct (multiplicity (list_contents l) a); auto with arith.
simpl; inversion 1.
inversion H3.
-- destruct H0; auto.
* rewrite IHl; intros.
generalize (H a0); auto with arith.
destruct (eq_dec a a0); simpl; auto with arith.
Qed.
Lemma NoDup_permut :
forall l l', NoDup l -> NoDup l' ->
(forall x, In x l <-> In x l') -> permutation l l'.
Proof.
intros.
red; unfold meq; intros.
rewrite multiplicity_NoDup in H, H0.
generalize (H a) (H0 a) (H1 a); clear H H0 H1.
do 2 rewrite multiplicity_In.
intros H H' [H0 H0'].
destruct (multiplicity (list_contents l) a) as [|[|n]],
(multiplicity (list_contents l') a) as [|[|n']];
[ tauto | | | | tauto | | | | ]; try solve [intuition auto with arith]; exfalso.
- now inversion H'.
- now inversion H.
- now inversion H.
Qed.
(** Permutation is compatible with In. *)
Lemma permut_In_In :
forall l1 l2 e, permutation l1 l2 -> In e l1 -> In e l2.
Proof.
unfold PermutSetoid.permutation, meq; intros l1 l2 e P IN.
generalize (P e); clear P.
destruct (In_dec eq_dec e l2) as [H|H]; auto.
rewrite (multiplicity_In_O _ _ H).
intros.
generalize (multiplicity_In_S _ _ IN).
rewrite H0.
inversion 1.
Qed.
Lemma permut_cons_In :
forall l1 l2 e, permutation (e :: l1) l2 -> In e l2.
Proof.
intros; eapply permut_In_In; eauto.
red; auto.
Qed.
(** Permutation of an empty list. *)
Lemma permut_nil :
forall l, permutation l nil -> l = nil.
Proof.
intro l; destruct l as [ | e l ]; trivial.
assert (In e (e::l)) by (red; auto).
intro Abs; generalize (permut_In_In _ Abs H).
inversion 1.
Qed.
(** When used with [eq], this permutation notion is equivalent to
the one defined in [List.v]. *)
Lemma permutation_Permutation :
forall l l', Permutation l l' <-> permutation l l'.
Proof.
split.
- induction 1.
+ apply permut_refl.
+ apply permut_cons; auto.
+ change (permutation (y::x::l) ((x::nil)++y::l)).
apply permut_add_cons_inside; simpl; apply permut_refl.
+ apply permut_trans with l'; auto.
- revert l'.
induction l.
+ intros.
rewrite (permut_nil (permut_sym H)).
apply Permutation_refl.
+ intros.
destruct (In_split _ _ (permut_cons_In H)) as (h2,(t2,H1)).
subst l'.
apply Permutation_cons_app.
apply IHl.
apply permut_remove_hd with a; auto with typeclass_instances.
Qed.
(** Permutation for short lists. *)
Lemma permut_length_1:
forall a b, permutation (a :: nil) (b :: nil) -> a=b.
Proof.
intros a b; unfold PermutSetoid.permutation, meq; intro P;
generalize (P b); clear P; simpl.
destruct (eq_dec b b) as [H|H]; [ | destruct H; auto].
destruct (eq_dec a b); simpl; auto; intros; discriminate.
Qed.
Lemma permut_length_2 :
forall a1 b1 a2 b2, permutation (a1 :: b1 :: nil) (a2 :: b2 :: nil) ->
(a1=a2) /\ (b1=b2) \/ (a1=b2) /\ (a2=b1).
Proof.
intros a1 b1 a2 b2 P.
assert (H:=permut_cons_In P).
inversion_clear H.
- left; split; auto.
apply permut_length_1.
red; red; intros.
generalize (P a); clear P; simpl.
destruct (eq_dec a1 a) as [H2|H2];
destruct (eq_dec a2 a) as [H3|H3]; auto.
+ destruct H3; transitivity a1; auto.
+ destruct H2; transitivity a2; auto.
- right.
inversion_clear H0; [|inversion H].
split; auto.
apply permut_length_1.
red; red; intros.
generalize (P a); clear P; simpl.
destruct (eq_dec a1 a) as [H2|H2];
destruct (eq_dec b2 a) as [H3|H3]; auto.
+ simpl; rewrite <- plus_n_Sm; inversion 1; auto.
+ destruct H3; transitivity a1; auto.
+ destruct H2; transitivity b2; auto.
Qed.
(** Permutation is compatible with length. *)
Lemma permut_length :
forall l1 l2, permutation l1 l2 -> length l1 = length l2.
Proof.
induction l1; intros l2 H.
- rewrite (permut_nil (permut_sym H)); auto.
- destruct (In_split _ _ (permut_cons_In H)) as (h2,(t2,H1)).
subst l2.
rewrite length_app.
simpl; rewrite <- plus_n_Sm; f_equal.
rewrite <- length_app.
apply IHl1.
apply permut_remove_hd with a; auto with typeclass_instances.
Qed.
Variable B : Type.
Variable eqB_dec : forall x y:B, { x=y }+{ ~x=y }.
(** Permutation is compatible with map. *)
Lemma permutation_map :
forall f l1 l2, permutation l1 l2 ->
PermutSetoid.permutation _ eqB_dec (map f l1) (map f l2).
Proof.
intros f; induction l1.
- intros l2 P; rewrite (permut_nil (permut_sym P)); apply permut_refl.
- intros l2 P.
simpl.
destruct (In_split _ _ (permut_cons_In P)) as (h2,(t2,H1)).
subst l2.
rewrite map_app.
simpl.
apply permut_add_cons_inside.
rewrite <- map_app.
apply IHl1; auto.
apply permut_remove_hd with a; auto with typeclass_instances.
Qed.
End Perm.
|