1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import Ascii String.
From Stdlib Require Import BinNums.
Import BinNatDef.
Import BinIntDef.
Import BinPosDef.
Local Open Scope positive_scope.
Local Open Scope string_scope.
Definition ascii_to_digit (ch : ascii) : option N
:= (if ascii_dec ch "0" then Some 0
else if ascii_dec ch "1" then Some 1
else None)%N.
Fixpoint pos_bin_app (p q:positive) : positive :=
match q with
| q~0 => (pos_bin_app p q)~0
| q~1 => (pos_bin_app p q)~1
| 1 => p~1
end.
Module Raw.
Fixpoint of_pos (p : positive) (rest : string) : string
:= match p with
| 1 => String "1" rest
| p'~0 => of_pos p' (String "0" rest)
| p'~1 => of_pos p' (String "1" rest)
end.
Fixpoint to_N (s : string) (rest : N)
: N
:= match s with
| "" => rest
| String ch s'
=> to_N
s'
match ascii_to_digit ch with
| Some v => N.add v (N.double rest)
| None => N0
end
end.
Fixpoint to_N_of_pos (p : positive) (rest : string) (base : N) {struct p}
: to_N (of_pos p rest) base
= to_N rest match base with
| N0 => N.pos p
| Npos v => Npos (pos_bin_app v p)
end.
Proof.
destruct p as [p|p|]; destruct base; try reflexivity;
cbn; rewrite to_N_of_pos; reflexivity.
Qed.
End Raw.
Definition of_pos (p : positive) : string
:= String "0" (String "b" (Raw.of_pos p "")).
Definition of_N (n : N) : string
:= match n with
| N0 => "0b0"
| Npos p => of_pos p
end.
Definition of_Z (z : Z) : string
:= match z with
| Zneg p => String "-" (of_pos p)
| Z0 => "0b0"
| Zpos p => of_pos p
end.
Definition of_nat (n : nat) : string
:= of_N (N.of_nat n).
Definition to_N (s : string) : N
:= match s with
| String s0 (String sb s)
=> if ascii_dec s0 "0"
then if ascii_dec sb "b"
then Raw.to_N s N0
else N0
else N0
| _ => N0
end.
Definition to_pos (s : string) : positive
:= match to_N s with
| N0 => 1
| Npos p => p
end.
Definition to_Z (s : string) : Z
:= let '(is_neg, n) := match s with
| String s0 s'
=> if ascii_dec s0 "-"
then (true, to_N s')
else (false, to_N s)
| EmptyString => (false, to_N s)
end in
match n with
| N0 => Z0
| Npos p => if is_neg then Zneg p else Zpos p
end.
Definition to_nat (s : string) : nat
:= N.to_nat (to_N s).
Lemma to_N_of_N (n : N)
: to_N (of_N n)
= n.
Proof.
destruct n; [ reflexivity | apply Raw.to_N_of_pos ].
Qed.
Lemma Z_of_of_Z (z : Z)
: to_Z (of_Z z)
= z.
Proof.
cbv [of_Z to_Z]; destruct z as [|z|z]; cbn;
try reflexivity;
rewrite Raw.to_N_of_pos; cbn; reflexivity.
Qed.
Lemma to_nat_of_nat (n : nat)
: to_nat (of_nat n)
= n.
Proof.
cbv [to_nat of_nat];
rewrite to_N_of_N, Nnat.Nat2N.id; reflexivity.
Qed.
Lemma to_pos_of_pos (p : positive)
: to_pos (of_pos p)
= p.
Proof.
cbv [of_pos to_pos to_N]; cbn;
rewrite Raw.to_N_of_pos; cbn; reflexivity.
Qed.
Example of_pos_1 : of_pos 1 = "0b1" := eq_refl.
Example of_pos_2 : of_pos 2 = "0b10" := eq_refl.
Example of_pos_3 : of_pos 3 = "0b11" := eq_refl.
Example of_N_0 : of_N 0 = "0b0" := eq_refl.
Example of_Z_0 : of_Z 0 = "0b0" := eq_refl.
Example of_Z_m1 : of_Z (-1) = "-0b1" := eq_refl.
Example of_nat_0 : of_nat 0 = "0b0" := eq_refl.
|