File: PString.v

package info (click to toggle)
rocq-stdlib 9.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 11,828 kB
  • sloc: python: 2,928; sh: 444; makefile: 319; javascript: 24; ml: 2
file content (659 lines) | stat: -rw-r--r-- 23,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
From Stdlib Require Import Uint63.
From Stdlib Require Export PrimString.
From Stdlib Require Export PrimStringAxioms.

From Stdlib.micromega Require Import Lia.
From Stdlib.micromega Require Import ZifyUint63.
From Stdlib.micromega Require Import Zify.
From Stdlib Require Import Ring63.
From Stdlib Require Import ZArith.

#[local] Open Scope Z_scope.
#[local] Open Scope list_scope.
#[local] Arguments to_Z _/ : simpl nomatch.

#[local] Instance Op_max_length : ZifyClasses.CstOp max_length :=
  { TCst := 16777211%Z ; TCstInj := eq_refl }.
Add Zify CstOp Op_max_length.

#[local] Ltac case_if :=
  lazymatch goal with
  | |- context C [if ?b then _ else _] => destruct b eqn:?
  | H : context C [if ?b then _ else _] |- _ => destruct b eqn:?
  end.

(** Derived properties of to_list and of_list. *)

Lemma to_list_inj (s1 s2 : string) :
  to_list s1 = to_list s2 -> s1 = s2.
Proof.
  intros H. rewrite <-(of_to_list s1), <-(of_to_list s2), H.
  reflexivity.
Qed.

Lemma to_of_list (l : list char63) :
  List.Forall char63_valid l ->
  Z.of_nat (List.length l) <= to_Z max_length ->
  to_list (of_list l) = l.
Proof.
  induction l as [|c l IH]; simpl; intros Hvalid Hlen; [reflexivity|].
  apply List.Forall_cons_iff in Hvalid as [Hvalid1 Hvalid2].
  rewrite cat_spec, make_spec, Hvalid1, IH; [|assumption|simpl; lia].
  rewrite List.firstn_all2; [reflexivity|simpl; lia].
Qed.

(** Alternative specifications with explicit bounds. *)

Lemma get_spec_in_bounds (s : string) (i : int) :
  to_Z i < to_Z (length s) ->
  char63_valid (get s i) /\
  List.nth_error (to_list s) (to_nat i) = Some (get s i).
Proof.
  intros Hlt. rewrite get_spec. split.
  - pose proof to_list_char63_valid s as Hs.
    apply List.Forall_nth; [assumption|]. rewrite <-length_spec. lia.
  - apply List.nth_error_nth'. rewrite <-length_spec. lia.
Qed.

Lemma get_spec_not_in_bounds (s : string) (i : int) :
  to_Z (length s) <= to_Z i ->
  get s i = 0%uint63.
Proof.
  intros Hle. rewrite get_spec, List.nth_overflow; [reflexivity|].
  rewrite <-length_spec. lia.
Qed.

Lemma make_spec_valid_length (i : int) (c : char63) :
  to_Z i <= to_Z max_length ->
  to_list (make i c) = List.repeat (c land 255)%uint63 (to_nat i).
Proof.
  intros Hle. rewrite make_spec, Nat.min_l; [reflexivity | lia].
Qed.

Lemma make_spec_invalid_length (i : int) (c : char63) :
  to_Z max_length < to_Z i ->
  to_list (make i c) = List.repeat (c land 255)%uint63 (to_nat max_length).
Proof.
  intros Hle. rewrite make_spec, Nat.min_r; [reflexivity | lia].
Qed.

Lemma cat_spec_valid_length (s1 s2 : string) :
  to_Z (length s1) + to_Z (length s2) <= to_Z max_length ->
  to_list (cat s1 s2) = to_list s1 ++ to_list s2.
Proof.
  intros Hlen. rewrite cat_spec, List.firstn_all2; [reflexivity|].
  rewrite List.length_app, <-!length_spec. lia.
Qed.

(** * Properties of string length *)

Lemma valid_length (s : string) :
  to_Z (length s) <= to_Z max_length.
Proof.
  pose proof (to_list_length s) as Hvalid.
  rewrite <-(length_spec s) in Hvalid. lia.
Qed.

Lemma length_spec_int (s : string) :
  length s = of_Z (Z.of_nat (List.length (to_list s))).
Proof.
  apply to_Z_inj. rewrite <-length_spec.
  rewrite of_Z_spec, Z.mod_small, Z2Nat.id; lia.
Qed.

Lemma length_spec_Z (s : string) :
  to_Z (length s) = Z.of_nat (List.length (to_list s)).
Proof.
  rewrite <-length_spec. rewrite Z2Nat.id; lia.
Qed.

Lemma make_length_spec (i : int) (c : char63) :
  to_Z i <= to_Z max_length ->
  length (make i c) = i.
Proof.
  intros Hvalid.
  pose proof (length_spec (make i c)) as Hlen.
  rewrite (make_spec_valid_length i c Hvalid) in Hlen.
  rewrite List.repeat_length in Hlen. lia.
Qed.

Lemma sub_length_spec (s : string) (off len : int) :
  to_Z off <= to_Z (length s) ->
  to_Z len <= to_Z (length s) - to_Z off ->
  length (sub s off len) = len.
Proof.
  intros Hoff Hlen.
  pose proof (length_spec (sub s off len)) as Hs.
  rewrite sub_spec, List.firstn_length_le in Hs; [lia|].
  rewrite List.length_skipn, <-length_spec. lia.
Qed.

Lemma cat_length_spec (s1 s2 : string) :
  length (cat s1 s2) = Uint63.min max_length (length s1 + length s2)%uint63.
Proof.
  rewrite length_spec_int, cat_spec, List.length_firstn.
  rewrite Nat2Z.inj_min, Z2Nat.id; [|lia].
  rewrite List.length_app, <-!length_spec.
  rewrite <-Z2Nat.inj_add; [|lia|lia].
  rewrite Z2Nat.id; [|lia].
  assert (to_Z (length s1) + to_Z (length s2) =
            (to_Z (length s1) + to_Z (length s2)) mod wB) as ->.
  { rewrite Z.mod_small; [reflexivity|]. split; [lia|].
    pose proof valid_length s1 as Hs1.
    pose proof valid_length s2 as Hs2.
    simpl in *. lia. }
  rewrite <-add_spec, <-Uint63.min_spec, of_to_Z. reflexivity.
Qed.

Lemma cat_length_spec_no_overflow (s1 s2 : string) :
  to_Z (length s1) + to_Z (length s2) <= to_Z max_length ->
  length (cat s1 s2) = (length s1 + length s2)%uint63.
Proof.
  intros Hlen. rewrite cat_length_spec. unfold min.
  destruct (max_length ≤? length s1 + length s2)%uint63 eqn:Hle; [|reflexivity].
  rewrite leb_spec, add_spec, Z.mod_small in Hle; [|lia].
  apply to_Z_inj. rewrite add_spec, Z.mod_small; lia.
Qed.

(** * Properties of string get *)

Lemma get_char63_valid (s : string) (i : int) :
  char63_valid (get s i).
Proof.
  rewrite get_spec.
  destruct (to_nat i <? Datatypes.length (to_list s))%nat eqn:Hlt.
  - pose proof to_list_char63_valid s as Hvalid.
    apply List.Forall_nth; [assumption|lia].
  - rewrite List.nth_overflow; [reflexivity|lia].
Qed.

Lemma make_get_spec (i j : int) (c : char63) :
  to_Z j < to_Z max_length ->
  to_Z j < to_Z i ->
  get (make i c) j = (c land 255)%uint63.
Proof.
  intros Hmax Hj. rewrite get_spec, make_spec.
  rewrite List.nth_repeat_lt; [reflexivity|lia].
Qed.

Lemma make_get_spec_valid (i j : int) (c : char63) :
  to_Z j < to_Z max_length ->
  to_Z j < to_Z i ->
  char63_valid c ->
  get (make i c) j = c.
Proof.
  intros. rewrite make_get_spec; assumption.
Qed.

Lemma sub_get_spec (s : string) (off len i : int) :
  to_Z off + to_Z i < wB ->
  to_Z i < to_Z len ->
  get (sub s off len) i = get s (off + i).
Proof.
  intros Hno Hi.
  rewrite !get_spec, sub_spec.
  rewrite List.nth_firstn, List.nth_skipn. case_if; [|lia].
  f_equal. rewrite Uint63.add_spec, Z.mod_small; lia.
Qed.

Lemma cat_get_spec_l (s1 s2 : string) (i : int) :
  to_Z i < to_Z (length s1) ->
  get (cat s1 s2) i = get s1 i.
Proof.
  intros Hi.
  pose proof valid_length s1 as Hs1.
  rewrite !get_spec, cat_spec.
  rewrite List.nth_firstn. case_if; [|lia].
  rewrite List.app_nth1; [reflexivity|].
  rewrite <-length_spec. lia.
Qed.

Lemma cat_get_spec_r (s1 s2 : string) (i : int) :
  to_Z (length s1) <= to_Z i ->
  to_Z i < to_Z max_length ->
  get (cat s1 s2) i = get s2 (i - length s1).
Proof.
  intros H1 H2.
  rewrite !get_spec, cat_spec.
  rewrite List.nth_firstn. case_if; [|lia].
  rewrite List.app_nth2; [|rewrite <-length_spec; lia].
  rewrite <-length_spec, Uint63.sub_spec, Z.mod_small; [|lia].
  rewrite Z2Nat.inj_sub; [reflexivity|lia].
Qed.

(** * Properties of string comparison *)

Lemma char63_compare_refl (c1 c2 : char63) :
  char63_compare c1 c2 = Eq <-> c1 = c2.
Proof.
  rewrite Uint63.compare_spec, Z.compare_eq_iff.
  split; [apply to_Z_inj|intros <-; reflexivity].
Qed.

Lemma char63_compare_antisym (c1 c2 : char63) :
  char63_compare c2 c1 = CompOpp (char63_compare c1 c2).
Proof.
  rewrite !Uint63.compare_spec. apply Z.compare_antisym.
Qed.

Lemma char63_compare_trans (c1 c2 c3 : char63) (c : comparison) :
  char63_compare c1 c2 = c -> char63_compare c2 c3 = c -> char63_compare c1 c3 = c.
Proof.
  destruct c.
  - rewrite !char63_compare_refl. intros -> ->. reflexivity.
  - rewrite !Uint63.compare_spec. apply Zcompare_Lt_trans.
  - rewrite !Uint63.compare_spec. apply Zcompare_Gt_trans.
Qed.

Lemma compare_refl (s : string) : compare s s = Eq.
Proof.
  rewrite PrimStringAxioms.compare_spec.
  apply (List.list_compare_refl _ char63_compare_refl). reflexivity.
Qed.

Lemma compare_antisym (s1 s2 : string) :
  compare s2 s1 = CompOpp (compare s1 s2).
Proof.
  rewrite !PrimStringAxioms.compare_spec.
  apply List.list_compare_antisym.
  - apply char63_compare_refl.
  - apply char63_compare_antisym.
Qed.

Lemma compare_trans (c : comparison) (s1 s2 s3 : string) :
  compare s1 s2 = c -> compare s2 s3 = c -> compare s1 s3 = c.
Proof.
  rewrite !PrimStringAxioms.compare_spec.
  apply List.list_compare_trans.
  - apply char63_compare_refl.
  - apply char63_compare_trans.
  - apply char63_compare_antisym.
Qed.

Lemma compare_eq_correct (s1 s2 : string) :
  compare s1 s2 = Eq -> s1 = s2.
Proof.
  rewrite compare_spec, (List.list_compare_refl _ char63_compare_refl).
  apply to_list_inj.
Qed.

Lemma string_eq_ext (s1 s2 : string) :
  (length s1 = length s2 /\
   forall i, to_Z i < to_Z (length s1) -> get s1 i = get s2 i) ->
  s1 = s2.
Proof.
  intros [Hlen Hget]. apply to_list_inj.
  apply (List.nth_ext _ _ 0%uint63 0%uint63).
  + rewrite <-!length_spec, Hlen. reflexivity.
  + intros n Hn. rewrite <-length_spec in Hn.
    assert (n = to_nat (of_nat n)) as ->.
    { rewrite of_Z_spec, Z.mod_small, Nat2Z.id; lia. }
    rewrite <-!get_spec. apply Hget.
    rewrite of_Z_spec, Z.mod_small; lia.
Qed.

Lemma to_list_firstn_skipn_middle (s : string) (i : int) :
  to_Z i < to_Z (length s) ->
  to_list s = List.firstn (to_nat i) (to_list s) ++
                get s i :: List.skipn (to_nat (i + 1)) (to_list s).
Proof.
  intros Hi.
  assert (to_nat (i + 1) = S (to_nat i)) as ->.
  { rewrite add_spec, Z.mod_small, Z2Nat.inj_add; lia. }
  symmetry. apply List.firstn_skipn_middle.
  rewrite get_spec. apply List.nth_error_nth'.
  rewrite <-length_spec. lia.
Qed.

Lemma compare_spec (s1 s2 : string) (c : comparison) :
  compare s1 s2 = c <->
  exists i,
    to_Z i <= to_Z (length s1) /\
    to_Z i <= to_Z (length s2) /\
    (forall j, to_Z j < to_Z i -> get s1 j = get s2 j) /\
    match (i =? length s1, i =? length s2)%uint63 with
    | (true , true ) => c = Eq
    | (true , false) => c = Lt
    | (false, true ) => c = Gt
    | (false, false) =>
        match Uint63.compare (get s1 i) (get s2 i) with
        | Eq => False
        | ci => c = ci
        end
    end.
Proof.
  rewrite compare_spec. split.
  - pose proof List.list_compareP _ char63_compare_refl (to_list s1) (to_list s2) as Hcmp.
    revert Hcmp. remember (List.list_compare _ _ _) as c' eqn:Hc'. intros Hcmp Hcc'.
    induction Hcmp as [H|y ys H|x xs H|????? H1 H2 H|????? H1 H2 H]; clear Hc'; subst c.
    + apply to_list_inj in H. subst s2. exists (length s1).
      rewrite eqb_eq, Z.eqb_refl. repeat split; lia.
    + exists (length s1).
      rewrite !eqb_eq, Z.eqb_refl, !length_spec_Z, H, List.length_app.
      repeat split; [lia|lia| |].
      * intros j Hj. rewrite !get_spec, H. rewrite List.app_nth1; [reflexivity|lia].
      * simpl in *. case_if; [exfalso; lia|reflexivity].
    + exists (length s2).
      rewrite !eqb_eq, Z.eqb_refl, !length_spec_Z, H, List.length_app.
      repeat split; [lia|lia| |].
      * intros j Hj. rewrite !get_spec, H. rewrite List.app_nth1; [reflexivity|lia].
      * simpl in *. case_if; [exfalso; lia|reflexivity].
    + exists (of_nat (List.length prefix)).
      assert (Z.of_nat (List.length prefix) < wB) as Hprefix.
      { pose proof f_equal (@List.length _) H1 as Hlen.
        pose proof valid_length s1 as Hmax.
        rewrite <-length_spec, List.length_app in Hlen. lia. }
      rewrite !eqb_eq, !length_spec_Z, H1, H2, !List.length_app.
      rewrite of_Z_spec, Z.mod_small; [|lia].
      repeat split; [lia|lia| |].
      * intros i Hj. rewrite !get_spec, H1, H2, !List.app_nth1; [reflexivity|lia|lia].
      * simpl in *; repeat case_if; try lia.
        rewrite !get_spec, H1, H2.
        do 2 (rewrite List.app_nth2; [|rewrite of_Z_spec, Z.mod_small; lia]).
        rewrite !of_Z_spec, Z.mod_small, Nat2Z.id, Nat.sub_diag; [|lia].
        simpl. rewrite H. reflexivity.
    + exists (of_nat (List.length prefix)).
      assert (Z.of_nat (List.length prefix) < wB) as Hprefix.
      { pose proof f_equal (@List.length _) H1 as Hlen.
        pose proof valid_length s1 as Hmax.
        rewrite <-length_spec, List.length_app in Hlen. lia. }
      rewrite !eqb_eq, !length_spec_Z, H1, H2, !List.length_app.
      rewrite of_Z_spec, Z.mod_small; [|lia].
      repeat split; [lia|lia| |].
      * intros i Hj. rewrite !get_spec, H1, H2, !List.app_nth1; [reflexivity|lia|lia].
      * simpl in *; repeat case_if; try lia.
        rewrite !get_spec, H1, H2.
        do 2 (rewrite List.app_nth2; [|rewrite of_Z_spec, Z.mod_small; lia]).
        rewrite !of_Z_spec, Z.mod_small, Nat2Z.id, Nat.sub_diag; [|lia].
        simpl. rewrite H. reflexivity.
  - intros (i & Hs1 & Hs2 & Hget & H).
    pose proof valid_length s1 as Hlen1.
    pose proof valid_length s2 as Hlen2.
    apply (List.list_compare_spec_complete char63_compare_refl).
    repeat case_if; subst.
    + apply List.ListCompareEq. f_equal. apply string_eq_ext. split; [lia|].
      intros j Hj. apply Hget. lia.
    + assert (to_Z (length s1) < to_Z (length s2)) as Hlen by lia.
      assert (i = length s1) by lia; subst i.
      apply (List.ListCompareShorter _ _ (get s2 (length s1))
               (List.skipn (to_nat (length s1 + 1)) (to_list s2))).
      rewrite (to_list_firstn_skipn_middle s2 (length s1)) at 1; [|lia].
      f_equal. apply (List.nth_ext _ _ 0%uint63 0%uint63).
      { rewrite List.length_firstn, <-!length_spec. lia. }
      rewrite List.length_firstn, <-!length_spec, Nat.min_l; [|lia].
      intros n Hn. rewrite List.nth_firstn. case_if; [|lia].
      pose proof Hget (of_nat n). rewrite !get_spec in H.
      rewrite of_Z_spec, Z.mod_small, Nat2Z.id in H; [|lia].
      symmetry. apply H. lia.
    + assert (to_Z (length s2) < to_Z (length s1)) as Hlen by lia.
      assert (i = length s2) by lia; subst i.
      eapply (List.ListCompareLonger _ _ (get s1 (length s2))
                (List.skipn (to_nat (length s2 + 1)) (to_list s1))).
      rewrite (to_list_firstn_skipn_middle s1 (length s2)) at 1; [|lia].
      f_equal. apply (List.nth_ext _ _ 0%uint63 0%uint63).
      { rewrite List.length_firstn, <-!length_spec. lia. }
      rewrite List.length_firstn, <-!length_spec, Nat.min_l; [|lia].
      intros n Hn. rewrite List.nth_firstn. case_if; [|lia].
      pose proof Hget (of_nat n). rewrite !get_spec in H.
      rewrite of_Z_spec, Z.mod_small, Nat2Z.id in H; [|lia].
      apply H. lia.
    + enough (
          exists p l1 l2,
            to_list s1 = p ++ get s1 i :: l1 /\
              to_list s2 = p ++ get s2 i :: l2
        ) as (p & l1 & l2 & Hp1 & Hp2).
      { revert H. destruct (_ ?= _)%uint63 eqn:Hi; [intros []|intros -> ..].
        - eapply List.ListCompareLt; solve [eauto].
        - eapply List.ListCompareGt; solve [eauto]. }
      exists (to_list (sub s1 0 i)).
      exists (to_list (sub s1 (i + 1) (length s1 - i - 1))).
      exists (to_list (sub s2 (i + 1) (length s2 - i - 1))).
      rewrite !sub_spec; simpl.
      rewrite !(List.firstn_all2 (n:=to_nat (length _ - _ - _))).
      2-3: repeat progress rewrite ?List.length_skipn, ?Uint63.add_spec,
            ?Uint63.sub_spec, ?Z.mod_small, ?Z.min_r, <-?length_spec; simpl; lia.
      split; [apply to_list_firstn_skipn_middle; lia|].
      rewrite (to_list_firstn_skipn_middle s2 i) at 1; [|lia].
      enough (sub s2 0 i = sub s1 0 i) as H12.
      { f_equal. apply (f_equal to_list) in H12. revert H12.
        rewrite !sub_spec. simpl. intros ->. reflexivity. }
      apply string_eq_ext; split.
      { rewrite !sub_length_spec; lia. }
      rewrite sub_length_spec; [|lia|lia].
      intros j Hj. rewrite !sub_get_spec; [|lia..].
      ring_simplify (0 + j)%uint63. symmetry. apply Hget. assumption.
Qed.

Lemma compare_eq (s1 s2 : string) : compare s1 s2 = Eq <-> s1 = s2.
Proof. split; [apply compare_eq_correct|intros []; apply compare_refl]. Qed.

Lemma compare_lt_spec (s1 s2 : string) :
  compare s1 s2 = Lt <->
  exists i,
    to_Z i <= to_Z (length s1) /\
    to_Z i <= to_Z (length s2) /\
    (forall j, to_Z j < to_Z i -> get s1 j = get s2 j) /\
    ((i = length s1 /\ to_Z i < to_Z (length s2)) \/
     (to_Z i < to_Z (length s1) /\
      to_Z i < to_Z (length s2) /\
      char63_compare (get s1 i) (get s2 i) = Lt)).
Proof.
  rewrite compare_spec.
  setoid_rewrite Uint63Axioms.compare_def_spec; unfold compare_def.
  split.
  - intros [i (H1 & H2 & Hget & Heq)]; exists i.
    repeat split; [assumption..|].
    repeat case_if; try inversion Heq; try lia.
    right. repeat split; lia.
  - intros [i (H1 & H2 & Hget & H)]; exists i.
    repeat split; [assumption..|].
    destruct H as [(-> & Hi)|(Hi1 & Hi2 & H)].
    + repeat case_if; try reflexivity; lia.
    + repeat case_if; try reflexivity; try inversion H; lia.
Qed.

(** * Properties of make *)

Lemma make_0 (c : char63) : make 0 c = ""%pstring.
Proof.
  apply to_list_inj. rewrite make_spec. reflexivity.
Qed.

(** * Properties of cat *)

Lemma length_0_empty (s : string) : length s = 0%uint63 -> s = ""%pstring.
Proof.
  pose proof valid_length s as Hs. rewrite length_spec_Z in Hs.
  rewrite length_spec_int. intros H%eq_int_inj.
  rewrite of_Z_spec, Z.mod_small in H; [|lia].
  apply to_list_inj. destruct (to_list s); simpl in *; [reflexivity|lia].
Qed.

Lemma cat_empty_l (s : string) : cat ""%pstring s = s.
Proof.
  pose proof valid_length s as Hs.
  apply string_eq_ext. split.
  - rewrite cat_length_spec_no_overflow; simpl; [ring|assumption].
  - intros i Hi.
    rewrite cat_length_spec_no_overflow in Hi; [|simpl in * |- *; lia].
    simpl in Hi. ring_simplify (0 + length s)%uint63 in Hi.
    rewrite cat_get_spec_r; simpl in *; [|lia|lia].
    ring_simplify (i - 0)%uint63. reflexivity.
Qed.

Lemma cat_empty_r (s : string) : cat s ""%pstring = s.
Proof.
  pose proof valid_length s as Hs.
  apply string_eq_ext. split.
  - rewrite cat_length_spec_no_overflow; simpl in *; [ring|lia].
  - intros i Hi.
    rewrite cat_length_spec_no_overflow in Hi; [|simpl in * |- *; lia].
    simpl in Hi. ring_simplify (length s + 0)%uint63 in Hi.
    rewrite cat_get_spec_l; [reflexivity|assumption].
Qed.

Lemma cat_assoc (s1 s2 s3 : string) :
  cat (cat s1 s2) s3 = cat s1 (cat s2 s3).
Proof.
  apply string_eq_ext.
  rewrite !cat_length_spec.
  pose proof valid_length s1 as Hs1.
  pose proof valid_length s2 as Hs2.
  pose proof valid_length s3 as Hs3.
  simpl in *.
  rewrite !min_add_min_n_same; [|rewrite add_spec, Z.mod_small; lia].
  rewrite !min_add_n_min_same; [|rewrite add_spec, Z.mod_small; lia].
  split; [f_equal; ring|]. intros i Hi.
  rewrite !get_spec, !cat_spec.
  rewrite Uint63.min_spec, !add_spec, !Z.mod_small in Hi.
  2-3: repeat rewrite Z.mod_small; lia.
  rewrite !List.nth_firstn.
  case_if; [|reflexivity].
  destruct (to_Z i <? to_Z (length s1)) eqn:Hlen1.
  { rewrite !List.app_nth1.
    - rewrite List.nth_firstn. case_if; [|lia].
      rewrite List.app_nth1; [reflexivity|].
      rewrite <-length_spec. lia.
    - rewrite <-!length_spec. lia.
    - rewrite List.length_firstn, List.length_app, <-!length_spec. lia. }
  destruct (to_Z i <? to_Z (length s1) + to_Z (length s2)) eqn:Hlen2.
  { rewrite List.app_nth1, List.app_nth2.
    - rewrite List.nth_firstn. case_if; [|lia].
      rewrite List.nth_firstn. case_if; [|lia].
      rewrite List.app_nth2, List.app_nth1; [reflexivity| |].
      all: rewrite <-!length_spec; lia.
    - rewrite <-length_spec. lia.
    - rewrite List.length_firstn, List.length_app, <-!length_spec. lia. }
  rewrite !List.app_nth2.
  - rewrite List.nth_firstn. case_if; [|lia].
    rewrite List.app_nth2; [|rewrite <-!length_spec; lia].
    f_equal. rewrite List.length_firstn, List.length_app, <-!length_spec. lia.
  - rewrite <-length_spec. lia.
  - rewrite List.length_firstn, List.length_app, <-!length_spec. lia.
Qed.

(** * Properties of sub *)

Lemma sub_full (s : string) : sub s 0 (length s) = s.
Proof.
  apply to_list_inj. rewrite sub_spec, List.skipn_O.
  rewrite length_spec, List.firstn_all. reflexivity.
Qed.

Lemma sub_len_0 (off : int) (s : string) :
  sub s off 0 = ""%pstring.
Proof.
  apply to_list_inj. rewrite sub_spec. reflexivity.
Qed.

Lemma split_cat_sub (s : string) (len : int) :
  s = cat (sub s 0 len) (sub s len (length s - len)%uint63).
Proof.
  apply to_list_inj. rewrite cat_spec, !sub_spec, List.skipn_O.
  pose proof valid_length s.
  rewrite List.firstn_all2.
  2: rewrite List.length_app, !List.length_firstn, !List.length_skipn, <-length_spec; lia.
  rewrite <-(List.firstn_skipn (to_nat len) (to_list s)) at 1. f_equal.
  rewrite List.firstn_all2; [reflexivity|].
  rewrite List.length_skipn, <-length_spec.
  destruct (to_Z len <=? to_Z (length s)) eqn:Hle; [|lia].
  rewrite Uint63.sub_spec, Z.mod_small; lia.
Qed.

Lemma sub_sub (s : string) (off1 len1 off2 len2 : int) :
  to_Z off1 + to_Z off2 = to_Z (off1 + off2)%uint63 ->
  to_Z len2 <= to_Z len1 - to_Z off2 ->
  sub (sub s off1 len1) off2 len2 = sub s (off1 + off2)%uint63 len2.
Proof.
  intros H1 H2. apply to_list_inj. rewrite !sub_spec.
  rewrite <-H1, Z2Nat.inj_add; [|lia|lia]. clear H1.
  rewrite !List.skipn_firstn_comm.
  rewrite List.firstn_firstn, List.skipn_skipn.
  f_equal; [lia|f_equal; lia].
Qed.

(** Properties of to_list and of_list *)

Lemma of_list_length (l : list char63) :
  Z.of_nat (List.length l) <= to_Z max_length ->
  length (of_list l) = of_Z (Z.of_nat (List.length l)).
Proof.
  induction l as [|c l IH]; [reflexivity|].
  assert (List.length (c :: l) = S (List.length l)) as -> by reflexivity.
  rewrite Nat2Z.inj_succ. intros Hlen; simpl.
  pose proof (IH ltac:(lia)) as IH.
  rewrite cat_length_spec_no_overflow.
  2: rewrite IH, make_length_spec, of_Z_spec, Z.mod_small; lia.
  rewrite make_length_spec; [|lia].
  rewrite IH. apply to_Z_inj.
  rewrite of_Z_spec, Z.mod_small; [|lia].
  rewrite Uint63.add_spec, Z.mod_small.
  2: rewrite of_Z_spec, Z.mod_small; lia.
  rewrite of_Z_spec, Z.mod_small; lia.
Qed.

Lemma of_list_app (l1 l2 : list char63) :
  of_list (l1 ++ l2) = cat (of_list l1) (of_list l2).
Proof.
  revert l2; induction l1 as [|c l1 IH]; intros l2; simpl.
  - rewrite cat_empty_l. reflexivity.
  - rewrite IH. rewrite cat_assoc. reflexivity.
Qed.

Lemma to_list_cat (s1 s2 : string) :
  (to_Z (length s1) + to_Z (length s2) <= to_Z max_length)%Z ->
  to_list (cat s1 s2) = app (to_list s1) (to_list s2).
Proof.
  rewrite cat_spec. intros Hlen.
  rewrite List.firstn_all2; [reflexivity|].
  rewrite List.length_app, <-!length_spec. lia.
Qed.

(** * Ordered type *)

From Stdlib Require OrderedType.

Module OT <: OrderedType.OrderedType with Definition t := string.
  Definition t := string.

  Definition eq s1 s2 := compare s1 s2 = Eq.
  Definition lt s1 s2 := compare s1 s2 = Lt.

  Lemma eq_refl (s : t) : eq s s.
  Proof. apply compare_refl. Qed.

  Lemma eq_sym (s1 s2 : t) : eq s1 s2 -> eq s2 s1.
  Proof. unfold eq. intros Heq.  rewrite compare_antisym, Heq. reflexivity. Qed.

  Lemma eq_trans (s1 s2 s3 : t) : eq s1 s2 -> eq s2 s3 -> eq s1 s3.
  Proof. unfold eq. apply compare_trans. Qed.

  Lemma lt_trans (s1 s2 s3 : t) : lt s1 s2 -> lt s2 s3 -> lt s1 s3.
  Proof. unfold lt. apply compare_trans. Qed.

  Lemma lt_not_eq (s1 s2 : t) : lt s1 s2 -> not (eq s1 s2).
  Proof. unfold lt, eq. intros ->. discriminate. Qed.

  #[program]
  Definition compare (s1 s2 : t) : OrderedType.Compare lt eq s1 s2 :=
    match compare s1 s2 with
    | Eq => OrderedType.EQ _
    | Lt => OrderedType.LT _
    | Gt => OrderedType.GT _
    end.
  Next Obligation. symmetry. assumption. Defined.
  Next Obligation. symmetry. assumption. Defined.
  Next Obligation. unfold lt. rewrite compare_antisym, <-Heq_anonymous. reflexivity. Defined.

  Hint Immediate eq_sym : core.
  Hint Resolve eq_refl eq_trans lt_not_eq lt_trans : core.

  Definition eq_dec (s1 s2 : t) : {eq s1 s2} + {~ eq s1 s2}.
  Proof.
    unfold eq.
    destruct (PrimString.compare s1 s2).
    - left. reflexivity.
    - right. discriminate.
    - right. discriminate.
  Qed.
End OT.