1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Finite sets library.
* Authors: Pierre Letouzey and Jean-Christophe Filliâtre
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
From Stdlib Require Import OrderedType Orders.
Set Implicit Arguments.
(** * Some alternative (but equivalent) presentations for an Ordered Type
inferface. *)
(** ** The original interface *)
Module Type OrderedTypeOrig := OrderedType.OrderedType.
(** ** An interface based on compare *)
Module Type OrderedTypeAlt.
Parameter t : Type.
Parameter compare : t -> t -> comparison.
Infix "?=" := compare (at level 70, no associativity).
Parameter compare_sym :
forall x y, (y?=x) = CompOpp (x?=y).
Parameter compare_trans :
forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
End OrderedTypeAlt.
(** ** From OrderedTypeOrig to OrderedType. *)
Module Update_OT (O:OrderedTypeOrig) <: OrderedType.
Include Update_DT O. (* Provides : t eq eq_equiv eq_dec *)
Definition lt := O.lt.
#[global]
Instance lt_strorder : StrictOrder lt.
Proof.
split.
- intros x Hx. apply (O.lt_not_eq Hx); auto with *.
- exact O.lt_trans.
Qed.
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
apply proper_sym_impl_iff_2; auto with *.
intros x x' Hx y y' Hy H.
assert (H0 : lt x' y). {
destruct (O.compare x' y) as [H'|H'|H']; auto.
- elim (O.lt_not_eq H). transitivity x'; auto with *.
- elim (O.lt_not_eq (O.lt_trans H H')); auto.
}
destruct (O.compare x' y') as [H'|H'|H']; auto.
- elim (O.lt_not_eq H).
transitivity x'; auto with *. transitivity y'; auto with *.
- elim (O.lt_not_eq (O.lt_trans H' H0)); auto with *.
Qed.
Definition compare x y :=
match O.compare x y with
| EQ _ => Eq
| LT _ => Lt
| GT _ => Gt
end.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
intros; unfold compare; destruct O.compare; auto.
Qed.
End Update_OT.
(** ** From OrderedType to OrderedTypeOrig. *)
Module Backport_OT (O:OrderedType) <: OrderedTypeOrig.
Include Backport_DT O. (* Provides : t eq eq_refl eq_sym eq_trans eq_dec *)
Definition lt := O.lt.
Lemma lt_not_eq : forall x y, lt x y -> ~eq x y.
Proof.
intros x y L E; rewrite E in L. apply (StrictOrder_Irreflexive y); auto.
Qed.
Lemma lt_trans : Transitive lt.
Proof. apply O.lt_strorder. Qed.
Definition compare : forall x y, Compare lt eq x y.
Proof.
intros x y; destruct (CompSpec2Type (O.compare_spec x y));
[apply EQ|apply LT|apply GT]; auto.
Defined.
End Backport_OT.
(** ** From OrderedTypeAlt to OrderedType. *)
Module OT_from_Alt (Import O:OrderedTypeAlt) <: OrderedType.
Definition t := t.
Definition eq x y := (x?=y) = Eq.
Definition lt x y := (x?=y) = Lt.
#[global]
Instance eq_equiv : Equivalence eq.
Proof.
split; red.
- (* refl *)
unfold eq; intros x.
assert (H:=compare_sym x x).
destruct (x ?= x); simpl in *; auto; discriminate.
- (* sym *)
unfold eq; intros x y H.
rewrite compare_sym, H; simpl; auto.
- (* trans *)
apply compare_trans.
Qed.
#[global]
Instance lt_strorder : StrictOrder lt.
Proof.
split; repeat red; unfold lt; try apply compare_trans.
intros x H.
assert (eq x x) by reflexivity.
unfold eq in *; congruence.
Qed.
Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z.
Proof.
unfold lt, eq; intros x y z Hxy Hyz.
destruct (compare x z) eqn:Hxz; auto.
- rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
- rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
Qed.
Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z.
Proof.
unfold lt, eq; intros x y z Hxy Hyz.
destruct (compare x z) eqn:Hxz; auto.
- rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy.
rewrite (compare_trans Hxy Hxz) in Hyz; discriminate.
- rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz.
rewrite (compare_trans Hxz Hyz) in Hxy; discriminate.
Qed.
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
apply proper_sym_impl_iff_2; auto with *.
repeat red; intros.
eapply lt_eq; eauto. eapply eq_lt; eauto. symmetry; auto.
Qed.
Definition compare := O.compare.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
unfold eq, lt, compare; intros.
destruct (O.compare x y) eqn:H; auto.
apply CompGt.
rewrite compare_sym, H; auto.
Qed.
Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }.
Proof.
intros; unfold eq.
case (x ?= y); [ left | right | right ]; auto; discriminate.
Defined.
End OT_from_Alt.
(** From the original presentation to this alternative one. *)
Module OT_to_Alt (Import O:OrderedType) <: OrderedTypeAlt.
Definition t := t.
Definition compare := compare.
Infix "?=" := compare (at level 70, no associativity).
Lemma compare_sym :
forall x y, (y?=x) = CompOpp (x?=y).
Proof.
intros x y; unfold compare.
destruct (compare_spec x y) as [U|U|U];
destruct (compare_spec y x) as [V|V|V]; auto.
- rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
- rewrite U in V. elim (StrictOrder_Irreflexive y); auto.
- rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
- rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
- rewrite V in U. elim (StrictOrder_Irreflexive x); auto.
- rewrite V in U. elim (StrictOrder_Irreflexive y); auto.
Qed.
Lemma compare_Eq : forall x y, compare x y = Eq <-> eq x y.
Proof.
unfold compare.
intros x y; destruct (compare_spec x y); intuition;
try discriminate.
- rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
- rewrite H0 in H. elim (StrictOrder_Irreflexive y); auto.
Qed.
Lemma compare_Lt : forall x y, compare x y = Lt <-> lt x y.
Proof.
unfold compare.
intros x y; destruct (compare_spec x y); intuition;
try discriminate.
- rewrite H in H0. elim (StrictOrder_Irreflexive y); auto.
- rewrite H in H0. elim (StrictOrder_Irreflexive x); auto.
Qed.
Lemma compare_Gt : forall x y, compare x y = Gt <-> lt y x.
Proof.
intros x y. rewrite compare_sym, CompOpp_iff. apply compare_Lt.
Qed.
Lemma compare_trans :
forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
Proof.
intros c x y z.
destruct c; unfold compare;
rewrite ?compare_Eq, ?compare_Lt, ?compare_Gt;
transitivity y; auto.
Qed.
End OT_to_Alt.
|