File: BinIntDef.v

package info (click to toggle)
rocq-stdlib 9.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 11,828 kB
  • sloc: python: 2,928; sh: 444; makefile: 319; javascript: 24; ml: 2
file content (314 lines) | stat: -rw-r--r-- 7,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

From Stdlib Require Export BinNums.
From Stdlib Require Import BinPos BinNat.
From Stdlib Require Export BinNums.IntDef.

Local Open Scope Z_scope.

Local Notation "0" := Z0.
Local Notation "1" := (Zpos 1).
Local Notation "2" := (Zpos 2).

(***********************************************************)
(** * Binary Integers, Definitions of Operations *)
(***********************************************************)

(** Initial author: Pierre Crégut, CNET, Lannion, France *)

Module Z.

Include BinNums.IntDef.Z.

Definition t := Z.

(** ** Nicer names [Z.pos] and [Z.neg] for constructors *)

Notation pos := Zpos.
Notation neg := Zneg.

(** ** Constants *)

Definition zero := 0.
Definition one := 1.
Definition two := 2.

(** ** Successor *)

Definition succ x := x + 1.

(** ** Predecessor *)

Definition pred x := x + neg 1.

(** ** Square *)

Definition square x :=
  match x with
    | 0 => 0
    | pos p => pos (Pos.square p)
    | neg p => pos (Pos.square p)
  end.

(** ** Sign function *)

Definition sgn z :=
  match z with
    | 0 => 0
    | pos p => 1
    | neg p => neg 1
  end.

(** Boolean equality and comparisons *)

(** Nota: [geb] and [gtb] are provided for compatibility,
  but [leb] and [ltb] should rather be used instead, since
  more results will be available on them. *)

Definition geb x y :=
  match x ?= y with
    | Lt => false
    | _ => true
  end.

Definition gtb x y :=
  match x ?= y with
    | Gt => true
    | _ => false
  end.

Infix "=?" := eqb (at level 70, no associativity) : Z_scope.
Infix "<=?" := leb (at level 70, no associativity) : Z_scope.
Infix "<?" := ltb (at level 70, no associativity) : Z_scope.
Infix ">=?" := geb (at level 70, no associativity) : Z_scope.
Infix ">?" := gtb (at level 70, no associativity) : Z_scope.

(** ** Absolute value *)

Definition abs z :=
  match z with
    | 0 => 0
    | pos p => pos p
    | neg p => pos p
  end.

(** ** Conversions *)

(** From [Z] to [nat] via absolute value *)

Definition abs_nat (z:Z) : nat :=
  match z with
    | 0 => 0%nat
    | pos p => Pos.to_nat p
    | neg p => Pos.to_nat p
  end.

(** From [Z] to [N] via absolute value *)

Definition abs_N (z:Z) : N :=
  match z with
    | 0 => 0%N
    | pos p => N.pos p
    | neg p => N.pos p
  end.

(** From [Z] to [N] by rounding negative numbers to 0 *)

Definition to_N (z:Z) : N :=
  match z with
    | pos p => N.pos p
    | _ => 0%N
  end.

(** Conversion with a decimal representation for printing/parsing *)

Definition of_uint (d:Decimal.uint) := of_N (Pos.of_uint d).

Definition of_hex_uint (d:Hexadecimal.uint) := of_N (Pos.of_hex_uint d).

Definition of_num_uint (d:Number.uint) :=
  match d with
  | Number.UIntDecimal d => of_uint d
  | Number.UIntHexadecimal d => of_hex_uint d
  end.

Definition of_int (d:Decimal.int) :=
  match d with
  | Decimal.Pos d => of_uint d
  | Decimal.Neg d => opp (of_uint d)
  end.

Definition of_hex_int (d:Hexadecimal.int) :=
  match d with
  | Hexadecimal.Pos d => of_hex_uint d
  | Hexadecimal.Neg d => opp (of_hex_uint d)
  end.

Definition of_num_int (d:Number.int) :=
  match d with
  | Number.IntDecimal d => of_int d
  | Number.IntHexadecimal d => of_hex_int d
  end.

Definition to_int n :=
  match n with
  | 0 => Decimal.Pos Decimal.zero
  | pos p => Decimal.Pos (Pos.to_uint p)
  | neg p => Decimal.Neg (Pos.to_uint p)
  end.

Definition to_hex_int n :=
  match n with
  | 0 => Hexadecimal.Pos Hexadecimal.zero
  | pos p => Hexadecimal.Pos (Pos.to_hex_uint p)
  | neg p => Hexadecimal.Neg (Pos.to_hex_uint p)
  end.

Definition to_num_int n := Number.IntDecimal (to_int n).

Definition to_num_hex_int n := Number.IntHexadecimal (to_hex_int n).

(** ** Iteration of a function

    By convention, iterating a negative number of times is identity.
*)

Definition iter (n:Z) {A} (f:A -> A) (x:A) :=
  match n with
    | pos p => Pos.iter f x p
    | _ => x
  end.

Infix "/" := div : Z_scope.
Infix "mod" := modulo (at level 40, no associativity) : Z_scope.

(** ** Parity functions *)

Definition odd z :=
  match z with
    | 0 => false
    | pos (xO _) => false
    | neg (xO _) => false
    | _ => true
  end.


(** ** Division by two *)

(** [quot2] performs rounding toward zero, it is hence a particular
   case of [quot], and for all relative number [n] we have:
   [n = 2 * quot2 n + if odd n then sgn n else 0].  *)

Definition quot2 (z:Z) :=
  match z with
    | 0 => 0
    | pos 1 => 0
    | pos p => pos (Pos.div2 p)
    | neg 1 => 0
    | neg p => neg (Pos.div2 p)
  end.

(** NB: [Z.quot2] used to be named [Z.div2] in Coq <= 8.3 *)


(** * Base-2 logarithm *)

Definition log2 z :=
  match z with
    | pos (p~1) => pos (Pos.size p)
    | pos (p~0) => pos (Pos.size p)
    | _ => 0
  end.


(** ** Square root *)

Definition sqrt n :=
 match n with
  | pos p => pos (Pos.sqrt p)
  | _ => 0
 end.


(** ** Greatest Common Divisor *)

Definition gcd a b :=
  match a,b with
    | 0, _ => abs b
    | _, 0 => abs a
    | pos a, pos b => pos (Pos.gcd a b)
    | pos a, neg b => pos (Pos.gcd a b)
    | neg a, pos b => pos (Pos.gcd a b)
    | neg a, neg b => pos (Pos.gcd a b)
  end.

(** A generalized gcd, also computing division of a and b by gcd. *)

Definition ggcd a b : Z*(Z*Z) :=
  match a,b with
    | 0, _ => (abs b,(0, sgn b))
    | _, 0 => (abs a,(sgn a, 0))
    | pos a, pos b =>
       let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, pos bb))
    | pos a, neg b =>
       let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, neg bb))
    | neg a, pos b =>
       let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, pos bb))
    | neg a, neg b =>
       let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, neg bb))
  end.


(** ** Bitwise functions *)

(** When accessing the bits of negative numbers, all functions
  below will use the two's complement representation. For instance,
  [-1] will correspond to an infinite stream of true bits. If this
  isn't what you're looking for, you can use [abs] first and then
  access the bits of the absolute value.
*)

(** [testbit] : accessing the [n]-th bit of a number [a].
    For negative [n], we arbitrarily answer [false]. *)

Definition testbit a n :=
 match n with
   | 0 => odd a
   | pos p =>
     match a with
       | 0 => false
       | pos a => Pos.testbit a (N.pos p)
       | neg a => negb (N.testbit (Pos.pred_N a) (N.pos p))
     end
   | neg _ => false
 end.

(** Bitwise operations [lor] [land] [ldiff] [lxor] *)

Definition ldiff a b :=
 match a, b with
   | 0, _ => 0
   | _, 0 => a
   | pos a, pos b => of_N (Pos.ldiff a b)
   | neg a, pos b => neg (N.succ_pos (N.lor (Pos.pred_N a) (N.pos b)))
   | pos a, neg b => of_N (N.land (N.pos a) (Pos.pred_N b))
   | neg a, neg b => of_N (N.ldiff (Pos.pred_N b) (Pos.pred_N a))
 end.

Number Notation Z of_num_int to_num_hex_int : hex_Z_scope.
Number Notation Z of_num_int to_num_int : Z_scope.

End Z.

(** Re-export the notation for those who just [Import BinIntDef] *)
Number Notation Z Z.of_num_int Z.to_num_hex_int : hex_Z_scope.
Number Notation Z Z.of_num_int Z.to_num_int : Z_scope.