File: executable.cpp

package info (click to toggle)
rocr-runtime 6.4.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,928 kB
  • sloc: cpp: 126,824; ansic: 41,837; lisp: 1,225; asm: 905; sh: 452; python: 117; makefile: 59
file content (1981 lines) | stat: -rw-r--r-- 66,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
////////////////////////////////////////////////////////////////////////////////
//
// The University of Illinois/NCSA
// Open Source License (NCSA)
//
// Copyright (c) 2014-2020, Advanced Micro Devices, Inc. All rights reserved.
//
// Developed by:
//
//                 AMD Research and AMD HSA Software Development
//
//                 Advanced Micro Devices, Inc.
//
//                 www.amd.com
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
//  - Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimers.
//  - Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimers in
//    the documentation and/or other materials provided with the distribution.
//  - Neither the names of Advanced Micro Devices, Inc,
//    nor the names of its contributors may be used to endorse or promote
//    products derived from this Software without specific prior written
//    permission.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS WITH THE SOFTWARE.
//
////////////////////////////////////////////////////////////////////////////////

#include "executable.hpp"

#include <libelf.h>
#include <limits.h>
#include <link.h>
#include <unistd.h>

#include <algorithm>
#include <cstddef>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <atomic>
#include <fstream>
#include "inc/amd_hsa_elf.h"
#include "inc/amd_hsa_kernel_code.h"
#include "core/inc/amd_hsa_code.hpp"
#include "amd_hsa_code_util.hpp"
#include "amd_options.hpp"
#include "core/util/utils.h"

#include "AMDHSAKernelDescriptor.h"

using namespace rocr::amd::hsa;
using namespace rocr::amd::hsa::common;

// r_version history:
// 1: Initial debug protocol
// 2: New trap handler ABI. The reason for halting a wave is recorded in ttmp11[8:7].
// 3: New trap handler ABI. A wave halted at S_ENDPGM rewinds its PC by 8 bytes, and sets ttmp11[9]=1.
// 4: New trap handler ABI. Save the trap id in ttmp11[16:9]
// 5: New trap handler ABI. Save the PC in ttmp11[22:7] ttmp6[31:0], and park the wave if stopped
// 6: New trap handler ABI. ttmp6[25:0] contains dispatch index modulo queue size
// 7: New trap handler ABI. Send interrupts as a bitmask, coalescing concurrent exceptions.
// 8: New trap handler ABI. for gfx942: Initialize ttmp[4:5] if ttmp11[31] == 0.
// 9: New trap handler ABI. For gfx11: Save PC in ttmp11[22:7] ttmp6[31:0], and park the wave if stopped.
// 10: New trap handler ABI. Set status.skip_export when halting the wave.
//                           For gfx942, set ttmp6[31] = 0 if ttmp11[31] == 0.

HSA_API r_debug _amdgpu_r_debug;
static __forceinline link_map*& r_debug_tail() {
  static link_map* r_debug_tail_ = nullptr;
  return r_debug_tail_;
}

namespace rocr {
  // Having a side effect prevents call site optimization that allows removal of a noinline function call
  // with no side effect.
__attribute__((noinline)) void _loader_debug_state() {
  static volatile int function_needs_a_side_effect = 0;
  function_needs_a_side_effect ^= 1;
}

namespace amd {
namespace hsa {
namespace loader {

class LoaderOptions {
public:
  explicit LoaderOptions(std::ostream &error = std::cerr);

  const amd::options::NoArgOption* Help() const { return &help; }
  const amd::options::NoArgOption* DumpCode() const { return &dump_code; }
  const amd::options::NoArgOption* DumpIsa() const { return &dump_isa; }
  const amd::options::NoArgOption* DumpExec() const { return &dump_exec; }
  const amd::options::NoArgOption* DumpAll() const { return &dump_all; }
  const amd::options::ValueOption<std::string>* DumpDir() const { return &dump_dir; }
  const amd::options::PrefixOption* Substitute() const { return &substitute; }

  bool ParseOptions(const std::string& options);
  void Reset();
  void PrintHelp(std::ostream& out) const;

private:
  /// @brief Copy constructor - not available.
  LoaderOptions(const LoaderOptions&);

  /// @brief Assignment operator - not available.
  LoaderOptions& operator=(const LoaderOptions&);

  amd::options::NoArgOption help;
  amd::options::NoArgOption dump_code;
  amd::options::NoArgOption dump_isa;
  amd::options::NoArgOption dump_exec;
  amd::options::NoArgOption dump_all;
  amd::options::ValueOption<std::string> dump_dir;
  amd::options::PrefixOption substitute;
  amd::options::OptionParser option_parser;
};

LoaderOptions::LoaderOptions(std::ostream& error) :
  help("help", "print help"),
  dump_code("dump-code", "Dump finalizer output code object"),
  dump_isa("dump-isa", "Dump finalizer output to ISA text file"),
  dump_exec("dump-exec", "Dump executable to text file"),
  dump_all("dump-all", "Dump all finalizer input and output (as above)"),
  dump_dir("dump-dir", "Dump directory"),
  substitute("substitute", "Substitute code object with given index or index range on loading from file"),
  option_parser(false, error)
{
  option_parser.AddOption(&help);
  option_parser.AddOption(&dump_code);
  option_parser.AddOption(&dump_isa);
  option_parser.AddOption(&dump_exec);
  option_parser.AddOption(&dump_all);
  option_parser.AddOption(&dump_dir);
  option_parser.AddOption(&substitute);
}

bool LoaderOptions::ParseOptions(const std::string& options)
{
  return option_parser.ParseOptions(options.c_str());
}

void LoaderOptions::Reset()
{
  option_parser.Reset();
}

void LoaderOptions::PrintHelp(std::ostream& out) const
{
  option_parser.PrintHelp(out);
}

static const char *LOADER_DUMP_PREFIX = "amdcode";

Loader* Loader::Create(Context* context)
{
  return new AmdHsaCodeLoader(context);
}

void Loader::Destroy(Loader *loader)
{
  // Loader resets the link_map, but the executables and loaded code objects are not deleted.
  _amdgpu_r_debug.r_map = nullptr;
  _amdgpu_r_debug.r_state = r_debug::RT_CONSISTENT;
  r_debug_tail() = nullptr;
  delete loader;
}

Executable* AmdHsaCodeLoader::CreateExecutable(
  hsa_profile_t profile, const char *options, hsa_default_float_rounding_mode_t default_float_rounding_mode)
{
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);

  executables.push_back(new ExecutableImpl(profile, context, executables.size(), default_float_rounding_mode));
  return executables.back();
}

Executable* AmdHsaCodeLoader::CreateExecutable(
      std::unique_ptr<Context> isolated_context,
      hsa_profile_t profile,
      const char *options,
      hsa_default_float_rounding_mode_t default_float_rounding_mode)
{
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);

  executables.push_back(new ExecutableImpl(profile, std::move(isolated_context), executables.size(), default_float_rounding_mode));
  return executables.back();
}

static void AddCodeObjectInfoIntoDebugMap(link_map* map) {
  if (r_debug_tail()) {
      r_debug_tail()->l_next = map;
      map->l_prev = r_debug_tail();
      map->l_next = nullptr;
  } else {
      _amdgpu_r_debug.r_map = map;
      map->l_prev = nullptr;
      map->l_next = nullptr;
  }
  r_debug_tail() = map;
}

static void RemoveCodeObjectInfoFromDebugMap(link_map* map) {
  if (r_debug_tail() == map) {
      r_debug_tail() = map->l_prev;
  }
  if (_amdgpu_r_debug.r_map == map) {
      _amdgpu_r_debug.r_map = map->l_next;
  }

  if (map->l_prev) {
      map->l_prev->l_next = map->l_next;
  }
  if (map->l_next) {
      map->l_next->l_prev = map->l_prev;
  }

  free(map->l_name);
  memset(map, 0, sizeof(link_map));
}

hsa_status_t AmdHsaCodeLoader::FreezeExecutable(Executable *executable, const char *options) {
  hsa_status_t  status = executable->Freeze(options);
  if (status != HSA_STATUS_SUCCESS) {
    return status;
  }

  // Assuming runtime atomic implements C++ std::memory_order
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);
  atomic::Store(&_amdgpu_r_debug.r_state, r_debug::RT_ADD, std::memory_order_relaxed);
  atomic::Fence(std::memory_order_acq_rel);
  _loader_debug_state();
  atomic::Fence(std::memory_order_acq_rel);
  for (auto &lco : reinterpret_cast<ExecutableImpl*>(executable)->loaded_code_objects) {
    AddCodeObjectInfoIntoDebugMap(&(lco->r_debug_info));
  }
  atomic::Store(&_amdgpu_r_debug.r_state, r_debug::RT_CONSISTENT, std::memory_order_release);
  _loader_debug_state();

  return HSA_STATUS_SUCCESS;
}

void AmdHsaCodeLoader::DestroyExecutable(Executable *executable) {
  // Assuming runtime atomic implements C++ std::memory_order
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);
  atomic::Store(&_amdgpu_r_debug.r_state, r_debug::RT_DELETE, std::memory_order_relaxed);
  atomic::Fence(std::memory_order_acq_rel);
  _loader_debug_state();
  atomic::Fence(std::memory_order_acq_rel);
  for (auto &lco : reinterpret_cast<ExecutableImpl*>(executable)->loaded_code_objects) {
    RemoveCodeObjectInfoFromDebugMap(&(lco->r_debug_info));
  }
  atomic::Store(&_amdgpu_r_debug.r_state, r_debug::RT_CONSISTENT, std::memory_order_release);
  _loader_debug_state();

  executables[((ExecutableImpl*)executable)->id()] = nullptr;
  delete executable;
}

hsa_status_t AmdHsaCodeLoader::IterateExecutables(
  hsa_status_t (*callback)(
    hsa_executable_t executable,
    void *data),
  void *data)
{
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);
  assert(callback);

  for (auto &exec : executables) {
    if(exec != nullptr){
      hsa_status_t status = callback(Executable::Handle(exec), data);
      if (status != HSA_STATUS_SUCCESS) {
        return status;
      }
    }
  }

  return HSA_STATUS_SUCCESS;
}

hsa_status_t AmdHsaCodeLoader::QuerySegmentDescriptors(
  hsa_ven_amd_loader_segment_descriptor_t *segment_descriptors,
  size_t *num_segment_descriptors)
{
  if (!num_segment_descriptors) {
    return HSA_STATUS_ERROR_INVALID_ARGUMENT;
  }
  if (*num_segment_descriptors == 0 && segment_descriptors) {
    return HSA_STATUS_ERROR_INVALID_ARGUMENT;
  }
  if (*num_segment_descriptors != 0 && !segment_descriptors) {
    return HSA_STATUS_ERROR_INVALID_ARGUMENT;
  }

  this->EnableReadOnlyMode();

  size_t actual_num_segment_descriptors = 0;
  for (auto &executable : executables) {
    if (executable) {
      actual_num_segment_descriptors += executable->GetNumSegmentDescriptors();
    }
  }

  if (*num_segment_descriptors == 0) {
    *num_segment_descriptors = actual_num_segment_descriptors;
    this->DisableReadOnlyMode();
    return HSA_STATUS_SUCCESS;
  }
  if (*num_segment_descriptors != actual_num_segment_descriptors) {
    this->DisableReadOnlyMode();
    return HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS;
  }

  size_t i = 0;
  for (auto &executable : executables) {
    if (executable) {
      i += executable->QuerySegmentDescriptors(segment_descriptors, actual_num_segment_descriptors, i);
    }
  }

  this->DisableReadOnlyMode();
  return HSA_STATUS_SUCCESS;
}

uint64_t AmdHsaCodeLoader::FindHostAddress(uint64_t device_address)
{
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  if (device_address == 0) {
    return 0;
  }

  for (auto &exec : executables) {
    if (exec != nullptr) {
      uint64_t host_address = exec->FindHostAddress(device_address);
      if (host_address != 0) {
        return host_address;
      }
    }
  }
  return 0;
}

void AmdHsaCodeLoader::PrintHelp(std::ostream& out)
{
  LoaderOptions().PrintHelp(out);
}

void AmdHsaCodeLoader::EnableReadOnlyMode()
{
  rw_lock_.ReaderLock();
  for (auto &executable : executables) {
    if (executable) {
      ((ExecutableImpl*)executable)->EnableReadOnlyMode();
    }
  }
}

void AmdHsaCodeLoader::DisableReadOnlyMode()
{
  rw_lock_.ReaderUnlock();
  for (auto &executable : executables) {
    if (executable) {
      ((ExecutableImpl*)executable)->DisableReadOnlyMode();
    }
  }
}

//===----------------------------------------------------------------------===//
// SymbolImpl.                                                                    //
//===----------------------------------------------------------------------===//

bool SymbolImpl::GetInfo(hsa_symbol_info32_t symbol_info, void *value) {
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_TYPE) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_TYPE)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_TYPE) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_TYPE)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_NAME_LENGTH) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_NAME) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_NAME)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_MODULE_NAME_LENGTH) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME_LENGTH)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_MODULE_NAME) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_LINKAGE) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_LINKAGE)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_IS_DEFINITION) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_IS_DEFINITION)),
    "attributes are not compatible"
  );

  assert(value);

  switch (symbol_info) {
    case HSA_CODE_SYMBOL_INFO_TYPE: {
      *((hsa_symbol_kind_t*)value) = kind;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_NAME_LENGTH: {
      *((uint32_t*)value) = symbol_name.size();
      break;
    }
    case HSA_CODE_SYMBOL_INFO_NAME: {
      memset(value, 0x0, symbol_name.size());
      memcpy(value, symbol_name.c_str(), symbol_name.size());
      break;
    }
    case HSA_CODE_SYMBOL_INFO_MODULE_NAME_LENGTH: {
      *((uint32_t*)value) = module_name.size();
      break;
    }
    case HSA_CODE_SYMBOL_INFO_MODULE_NAME: {
      memset(value, 0x0, module_name.size());
      memcpy(value, module_name.c_str(), module_name.size());
      break;
    }
    case HSA_CODE_SYMBOL_INFO_LINKAGE: {
      *((hsa_symbol_linkage_t*)value) = linkage;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_IS_DEFINITION: {
      *((bool*)value) = is_definition;
      break;
    }
    case HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_CALL_CONVENTION: {
      *((uint32_t*)value) = 0;
      break;
    }
    case HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT:
    case HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS: {
      if (!is_loaded) {
        return false;
      }
      *((uint64_t*)value) = address;
      break;
    }
    case HSA_EXECUTABLE_SYMBOL_INFO_AGENT: {
      if (!is_loaded) {
        return false;
      }
      *((hsa_agent_t*)value) = agent;
      break;
    }
    default: {
      return false;
    }
  }

  return true;
}

//===----------------------------------------------------------------------===//
// KernelSymbol.                                                              //
//===----------------------------------------------------------------------===//

bool KernelSymbol::GetInfo(hsa_symbol_info32_t symbol_info, void *value) {
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_ALIGNMENT) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_ALIGNMENT)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK)),
    "attributes are not compatible"
  );

  assert(value);

  switch (symbol_info) {
    case HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE: {
      *((uint32_t*)value) = kernarg_segment_size;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_ALIGNMENT: {
      *((uint32_t*)value) = kernarg_segment_alignment;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE: {
      *((uint32_t*)value) = group_segment_size;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE: {
      *((uint32_t*)value) = private_segment_size;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK: {
      *((bool*)value) = is_dynamic_callstack;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_KERNEL_WAVEFRONT_SIZE: {
      *((uint32_t*)value) = wavefront_size;
      break;
    }
    case HSA_EXT_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT_SIZE: {
      *((uint32_t*)value) = size;
      break;
    }
    case HSA_EXT_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT_ALIGN: {
      *((uint32_t*)value) = alignment;
      break;
    }
    default: {
      return SymbolImpl::GetInfo(symbol_info, value);
    }
  }

  return true;
}

//===----------------------------------------------------------------------===//
// VariableSymbol.                                                            //
//===----------------------------------------------------------------------===//

bool VariableSymbol::GetInfo(hsa_symbol_info32_t symbol_info, void *value) {
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_VARIABLE_ALLOCATION) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALLOCATION)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_VARIABLE_SEGMENT) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SEGMENT)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_VARIABLE_ALIGNMENT) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALIGNMENT)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_VARIABLE_SIZE) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE)),
    "attributes are not compatible"
  );
  static_assert(
    (symbol_attribute32_t(HSA_CODE_SYMBOL_INFO_VARIABLE_IS_CONST) ==
     symbol_attribute32_t(HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_IS_CONST)),
    "attributes are not compatible"
  );

  switch (symbol_info) {
    case HSA_CODE_SYMBOL_INFO_VARIABLE_ALLOCATION: {
      *((hsa_variable_allocation_t*)value) = allocation;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_VARIABLE_SEGMENT: {
      *((hsa_variable_segment_t*)value) = segment;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_VARIABLE_ALIGNMENT: {
      *((uint32_t*)value) = alignment;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_VARIABLE_SIZE: {
      *((uint32_t*)value) = size;
      break;
    }
    case HSA_CODE_SYMBOL_INFO_VARIABLE_IS_CONST: {
      *((bool*)value) = is_constant;
      break;
    }
    default: {
      return SymbolImpl::GetInfo(symbol_info, value);
    }
  }

  return true;
}

bool LoadedCodeObjectImpl::GetInfo(amd_loaded_code_object_info_t attribute, void *value)
{
  assert(value);

  switch (attribute) {
    case AMD_LOADED_CODE_OBJECT_INFO_ELF_IMAGE:
      ((hsa_code_object_t*)value)->handle = reinterpret_cast<uint64_t>(elf_data);
      break;
    case AMD_LOADED_CODE_OBJECT_INFO_ELF_IMAGE_SIZE:
      *((size_t*)value) = elf_size;
      break;
    default: {
      return false;
    }
  }

  return true;
}

hsa_status_t LoadedCodeObjectImpl::IterateLoadedSegments(
  hsa_status_t (*callback)(
    amd_loaded_segment_t loaded_segment,
    void *data),
  void *data)
{
  assert(callback);

  for (auto &loaded_segment : loaded_segments) {
    hsa_status_t status = callback(LoadedSegment::Handle(loaded_segment), data);
    if (status != HSA_STATUS_SUCCESS) {
      return status;
    }
  }

  return HSA_STATUS_SUCCESS;
}

void LoadedCodeObjectImpl::Print(std::ostream& out)
{
  out << "Code Object" << std::endl;
}

bool Segment::GetInfo(amd_loaded_segment_info_t attribute, void *value)
{
  assert(value);

  switch (attribute) {
    case AMD_LOADED_SEGMENT_INFO_TYPE: {
      *((amdgpu_hsa_elf_segment_t*)value) = segment;
      break;
    }
    case AMD_LOADED_SEGMENT_INFO_ELF_BASE_ADDRESS: {
      *((uint64_t*)value) = vaddr;
      break;
    }
    case AMD_LOADED_SEGMENT_INFO_LOAD_BASE_ADDRESS: {
      *((uint64_t*)value) = reinterpret_cast<uint64_t>(this->Address(this->VAddr()));
      break;
    }
    case AMD_LOADED_SEGMENT_INFO_SIZE: {
      *((size_t*)value) = size;
      break;
    }
    default: {
      return false;
    }
  }

  return true;
}

uint64_t Segment::Offset(uint64_t addr)
{
  assert(IsAddressInSegment(addr));
  return addr - vaddr;
}

void* Segment::Address(uint64_t addr)
{
  return owner->context()->SegmentAddress(segment, agent, ptr, Offset(addr));
}

bool Segment::Freeze()
{
  return !frozen ? (frozen = owner->context()->SegmentFreeze(segment, agent, ptr, size)) : true;
}

bool Segment::IsAddressInSegment(uint64_t addr)
{
  return vaddr <= addr && addr < vaddr + size;
}

void Segment::Copy(uint64_t addr, const void* src, size_t size)
{
  // loader must do copies before freezing.
  assert(!frozen);

  if (size > 0) {
    owner->context()->SegmentCopy(segment, agent, ptr, Offset(addr), src, size);
  }
}

void Segment::Print(std::ostream& out)
{
  out << "Segment" << std::endl
    << "    Type: " << AmdHsaElfSegmentToString(segment)
    << "    Size: " << size
    << "    VAddr: " << vaddr << std::endl
    << "    Ptr: " << std::hex << ptr << std::dec
    << std::endl;
}

void Segment::Destroy()
{
  owner->context()->SegmentFree(segment, agent, ptr, size);
}

//===----------------------------------------------------------------------===//
// ExecutableImpl.                                                                //
//===----------------------------------------------------------------------===//

ExecutableImpl::ExecutableImpl(
    const hsa_profile_t &_profile,
    Context *context,
    size_t id,
    hsa_default_float_rounding_mode_t default_float_rounding_mode)
  : Executable()
  , profile_(_profile)
  , context_(context)
  , id_(id)
  , default_float_rounding_mode_(default_float_rounding_mode)
  , state_(HSA_EXECUTABLE_STATE_UNFROZEN)
  , program_allocation_segment(nullptr)
{
}

ExecutableImpl::ExecutableImpl(
    const hsa_profile_t &_profile,
    std::unique_ptr<Context> unique_context,
    size_t id,
    hsa_default_float_rounding_mode_t default_float_rounding_mode)
  : Executable()
  , profile_(_profile)
  , unique_context_(std::move(unique_context))
  , id_(id)
  , default_float_rounding_mode_(default_float_rounding_mode)
  , state_(HSA_EXECUTABLE_STATE_UNFROZEN)
  , program_allocation_segment(nullptr)
{
  context_ = unique_context_.get();
}

ExecutableImpl::~ExecutableImpl() {
  for (ExecutableObject* o : objects) {
    o->Destroy();
    delete o;
  }
  objects.clear();

  for (auto &symbol_entry : program_symbols_) {
    delete symbol_entry.second;
  }
  for (auto &symbol_entry : agent_symbols_) {
    delete symbol_entry.second;
  }
}

hsa_status_t ExecutableImpl::DefineProgramExternalVariable(
  const char *name, void *address)
{
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);
  assert(name);

  if (HSA_EXECUTABLE_STATE_FROZEN == state_) {
    return HSA_STATUS_ERROR_FROZEN_EXECUTABLE;
  }

  auto symbol_entry = program_symbols_.find(std::string(name));
  if (symbol_entry != program_symbols_.end()) {
    return HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED;
  }

  program_symbols_.insert(
    std::make_pair(std::string(name),
                   new VariableSymbol(true,
                                      "", // Only program linkage symbols can be
                                          // defined.
                                      std::string(name),
                                      HSA_SYMBOL_LINKAGE_PROGRAM,
                                      true,
                                      HSA_VARIABLE_ALLOCATION_PROGRAM,
                                      HSA_VARIABLE_SEGMENT_GLOBAL,
                                      0,     // TODO: size.
                                      0,     // TODO: align.
                                      false, // TODO: const.
                                      true,
                                      reinterpret_cast<uint64_t>(address))));
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::DefineAgentExternalVariable(
  const char *name,
  hsa_agent_t agent,
  hsa_variable_segment_t segment,
  void *address)
{
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);
  assert(name);

  if (HSA_EXECUTABLE_STATE_FROZEN == state_) {
    return HSA_STATUS_ERROR_FROZEN_EXECUTABLE;
  }

  auto symbol_entry = agent_symbols_.find(std::make_pair(std::string(name), agent));
  if (symbol_entry != agent_symbols_.end()) {
    return HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED;
  }

  auto insert_status = agent_symbols_.insert(
    std::make_pair(std::make_pair(std::string(name), agent),
                   new VariableSymbol(true,
                                      "", // Only program linkage symbols can be
                                          // defined.
                                      std::string(name),
                                      HSA_SYMBOL_LINKAGE_PROGRAM,
                                      true,
                                      HSA_VARIABLE_ALLOCATION_AGENT,
                                      segment,
                                      0,     // TODO: size.
                                      0,     // TODO: align.
                                      false, // TODO: const.
                                      true,
                                      reinterpret_cast<uint64_t>(address))));
  assert(insert_status.second);
  insert_status.first->second->agent = agent;

  return HSA_STATUS_SUCCESS;
}

bool ExecutableImpl::IsProgramSymbol(const char *symbol_name) {
  assert(symbol_name);

  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  return program_symbols_.find(std::string(symbol_name)) != program_symbols_.end();
}

Symbol* ExecutableImpl::GetSymbol(
  const char *symbol_name,
  const hsa_agent_t *agent)
{
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  return this->GetSymbolInternal(symbol_name, agent);
}

Symbol* ExecutableImpl::GetSymbolInternal(
  const char *symbol_name,
  const hsa_agent_t *agent)
{
  assert(symbol_name);

  std::string mangled_name = std::string(symbol_name);
  if (mangled_name.empty()) {
    return nullptr;
  }

  if (!agent) {
    auto program_symbol = program_symbols_.find(mangled_name);
    if (program_symbol != program_symbols_.end()) {
      return program_symbol->second;
    }
    return nullptr;
  }

  auto agent_symbol = agent_symbols_.find(std::make_pair(mangled_name, *agent));
  if (agent_symbol != agent_symbols_.end()) {
    return agent_symbol->second;
  }
  return nullptr;
}

hsa_status_t ExecutableImpl::IterateSymbols(
  iterate_symbols_f callback, void *data)
{
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  assert(callback);

  for (auto &symbol_entry : program_symbols_) {
    hsa_status_t hsc =
      callback(Executable::Handle(this), Symbol::Handle(symbol_entry.second), data);
    if (HSA_STATUS_SUCCESS != hsc) {
      return hsc;
    }
  }
  for (auto &symbol_entry : agent_symbols_) {
    hsa_status_t hsc =
      callback(Executable::Handle(this), Symbol::Handle(symbol_entry.second), data);
    if (HSA_STATUS_SUCCESS != hsc) {
      return hsc;
    }
  }

  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::IterateAgentSymbols(
    hsa_agent_t agent,
    hsa_status_t (*callback)(hsa_executable_t exec,
                             hsa_agent_t agent,
                             hsa_executable_symbol_t symbol,
                             void *data),
    void *data) {
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  assert(callback);

  for (auto &symbol_entry : agent_symbols_) {
    if (symbol_entry.second->GetAgent().handle != agent.handle) {
      continue;
    }

    hsa_status_t status = callback(
        Executable::Handle(this), agent, Symbol::Handle(symbol_entry.second),
        data);
    if (status != HSA_STATUS_SUCCESS) {
      return status;
    }
  }

  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::IterateProgramSymbols(
    hsa_status_t (*callback)(hsa_executable_t exec,
                             hsa_executable_symbol_t symbol,
                             void *data),
    void *data) {
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  assert(callback);

  for (auto &symbol_entry : program_symbols_) {
    hsa_status_t status = callback(
        Executable::Handle(this), Symbol::Handle(symbol_entry.second), data);
    if (status != HSA_STATUS_SUCCESS) {
      return status;
    }
  }

  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::IterateLoadedCodeObjects(
  hsa_status_t (*callback)(
    hsa_executable_t executable,
    hsa_loaded_code_object_t loaded_code_object,
    void *data),
  void *data)
{
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  assert(callback);

  for (auto &loaded_code_object : loaded_code_objects) {
    hsa_status_t status = callback(
        Executable::Handle(this),
        LoadedCodeObject::Handle(loaded_code_object),
        data);
    if (status != HSA_STATUS_SUCCESS) {
      return status;
    }
  }

  return HSA_STATUS_SUCCESS;
}

size_t ExecutableImpl::GetNumSegmentDescriptors()
{
  // assuming we are in readonly mode.
  size_t actual_num_segment_descriptors = 0;
  for (auto &obj : loaded_code_objects) {
    actual_num_segment_descriptors += obj->LoadedSegments().size();
  }
  return actual_num_segment_descriptors;
}

size_t ExecutableImpl::QuerySegmentDescriptors(
  hsa_ven_amd_loader_segment_descriptor_t *segment_descriptors,
  size_t total_num_segment_descriptors,
  size_t first_empty_segment_descriptor)
{
  // assuming we are in readonly mode.
  assert(segment_descriptors);
  assert(first_empty_segment_descriptor < total_num_segment_descriptors);

  size_t i = first_empty_segment_descriptor;
  for (auto &obj : loaded_code_objects) {
    assert(i < total_num_segment_descriptors);
    for (auto &seg : obj->LoadedSegments()) {
      segment_descriptors[i].agent = seg->Agent();
      segment_descriptors[i].executable = Executable::Handle(seg->Owner());
      segment_descriptors[i].code_object_storage_type = HSA_VEN_AMD_LOADER_CODE_OBJECT_STORAGE_TYPE_MEMORY;
      segment_descriptors[i].code_object_storage_base = obj->ElfData();
      segment_descriptors[i].code_object_storage_size = obj->ElfSize();
      segment_descriptors[i].code_object_storage_offset = seg->StorageOffset();
      segment_descriptors[i].segment_base = seg->Address(seg->VAddr());
      segment_descriptors[i].segment_size = seg->Size();
      ++i;
    }
  }

  return i - first_empty_segment_descriptor;
}

hsa_agent_t LoadedCodeObjectImpl::getAgent() const {
  assert(loaded_segments.size() == 1 && "Only supports code objects v2+");
  return loaded_segments.front()->Agent();
}
hsa_executable_t LoadedCodeObjectImpl::getExecutable() const {
  assert(loaded_segments.size() == 1 && "Only supports code objects v2+");
  return Executable::Handle(loaded_segments.front()->Owner());
}
uint64_t LoadedCodeObjectImpl::getElfData() const {
  return reinterpret_cast<uint64_t>(elf_data);
}
uint64_t LoadedCodeObjectImpl::getElfSize() const {
  return (uint64_t)elf_size;
}
uint64_t LoadedCodeObjectImpl::getStorageOffset() const {
  assert(loaded_segments.size() == 1 && "Only supports code objects v2+");
  return (uint64_t)loaded_segments.front()->StorageOffset();
}
uint64_t LoadedCodeObjectImpl::getLoadBase() const {
  // TODO Add support for code objects with 0 segments.
  assert(loaded_segments.size() == 1 && "Only supports code objects v2+");
  return reinterpret_cast<uint64_t>(loaded_segments.front()->Address(0));
}
uint64_t LoadedCodeObjectImpl::getLoadSize() const {
  // TODO Add support for code objects with 0 or >1 segments.
  assert(loaded_segments.size() == 1 && "Only supports code objects v2+");
  return (uint64_t)loaded_segments.front()->Size();
}
int64_t LoadedCodeObjectImpl::getDelta() const {
  // TODO Add support for code objects with 0 segments.
  assert(loaded_segments.size() == 1 && "Only supports code objects v2+");
  return getLoadBase() - loaded_segments.front()->VAddr();
}

std::string LoadedCodeObjectImpl::getUri() const {
  return std::string(r_debug_info.l_name);
}

hsa_executable_t AmdHsaCodeLoader::FindExecutable(uint64_t device_address)
{
  hsa_executable_t execHandle = {0};
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  if (device_address == 0) {
    return execHandle;
  }

  for (auto &exec : executables) {
    if (exec != nullptr) {
      uint64_t host_address = exec->FindHostAddress(device_address);
      if (host_address != 0) {
        return Executable::Handle(exec);
      }
    }
  }
  return execHandle;
}

uint64_t ExecutableImpl::FindHostAddress(uint64_t device_address)
{
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);
  for (auto &obj : loaded_code_objects) {
    assert(obj);
    for (auto &seg : obj->LoadedSegments()) {
      assert(seg);
      uint64_t paddr = (uint64_t)(uintptr_t)seg->Address(seg->VAddr());
      if (paddr <= device_address && device_address < paddr + seg->Size()) {
        void *haddr = context_->SegmentHostAddress(
          seg->ElfSegment(), seg->Agent(), seg->Ptr(), device_address - paddr);
        return nullptr == haddr ? 0 : (uint64_t)(uintptr_t)haddr;
      }
    }
  }
  return 0;
}

void ExecutableImpl::EnableReadOnlyMode()
{
  rw_lock_.ReaderLock();
}

void ExecutableImpl::DisableReadOnlyMode()
{
  rw_lock_.ReaderUnlock();
}

#define HSAERRCHECK(hsc)                                                       \
  if (hsc != HSA_STATUS_SUCCESS) {                                             \
    assert(false);                                                             \
    return hsc;                                                                \
  }                                                                            \


hsa_status_t ExecutableImpl::GetInfo(
    hsa_executable_info_t executable_info, void *value)
{
  ReaderLockGuard<ReaderWriterLock> reader_lock(rw_lock_);

  assert(value);

  switch (executable_info) {
    case HSA_EXECUTABLE_INFO_PROFILE: {
      *((hsa_profile_t*)value) = profile_;;
      break;
    }
    case HSA_EXECUTABLE_INFO_STATE: {
      *((hsa_executable_state_t*)value) = state_;
      break;
    }
    case HSA_EXECUTABLE_INFO_DEFAULT_FLOAT_ROUNDING_MODE: {
      *((hsa_default_float_rounding_mode_t*)value) =
          default_float_rounding_mode_;
      break;
    }
    default: {
      return HSA_STATUS_ERROR_INVALID_ARGUMENT;
    }
  }

  return HSA_STATUS_SUCCESS;
}

static uint32_t NextCodeObjectNum()
{
  static std::atomic_uint_fast32_t dumpN(1);
  return dumpN++;
}

hsa_status_t ExecutableImpl::LoadCodeObject(
  hsa_agent_t agent,
  hsa_code_object_t code_object,
  const char *options,
  const std::string &uri,
  hsa_loaded_code_object_t *loaded_code_object)
{
  return LoadCodeObject(agent, code_object, 0, options, uri, loaded_code_object);
}

hsa_status_t ExecutableImpl::LoadCodeObject(
  hsa_agent_t agent,
  hsa_code_object_t code_object,
  size_t code_object_size,
  const char *options,
  const std::string &uri,
  hsa_loaded_code_object_t *loaded_code_object)
{
  WriterLockGuard<ReaderWriterLock> writer_lock(rw_lock_);
  if (HSA_EXECUTABLE_STATE_FROZEN == state_) {
    logger_ << "LoaderError: executable is already frozen\n";
    return HSA_STATUS_ERROR_FROZEN_EXECUTABLE;
  }

  LoaderOptions loaderOptions;
  if (options && !loaderOptions.ParseOptions(options)) {
    return HSA_STATUS_ERROR;
  }

  const char *options_append = getenv("LOADER_OPTIONS_APPEND");
  if (options_append && !loaderOptions.ParseOptions(options_append)) {
    return HSA_STATUS_ERROR;
  }

  typedef std::tuple<uint32_t, uint32_t, std::string> Substitute;
  std::vector<Substitute> substitutes;

  for (const std::string& s : loaderOptions.Substitute()->values()) {
    std::string::size_type vi = s.find('=');
    if (vi == std::string::npos) { return HSA_STATUS_ERROR; }
    std::string value = s.substr(vi + 1);
    std::string range = s.substr(0, vi);
    std::string::size_type mi = range.find('-');
    uint32_t n1 = UINT32_MAX, n2 = UINT32_MAX;
    if (mi != std::string::npos) {
      std::string s1, s2;
      s1 = range.substr(0, mi - 1);
      s2 = range.substr(mi + 1);
      std::istringstream is1(s1); is1 >> n1;
      std::istringstream is2(s2); is2 >> n2;
    } else {
      std::istringstream is(range); is >> n1;
      n2 = n1;
    }
    substitutes.push_back(std::make_tuple(n1, n2, value));
  }

  uint32_t codeNum = NextCodeObjectNum();

  code.reset(new code::AmdHsaCode());

  std::string substituteFileName;
  for (const Substitute& ss : substitutes) {
    if (codeNum >= std::get<0>(ss) && codeNum <= std::get<1>(ss)) {
      substituteFileName = std::get<2>(ss);
      break;
    }
  }
  std::vector<char> buffer;
  if (substituteFileName.empty()) {
   if (!code->InitAsHandle(code_object)) {
      return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
    }
  } else {
    if (!ReadFileIntoBuffer(substituteFileName, buffer)) {
      return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
    }
    if (!code->InitAsBuffer(&buffer[0], buffer.size())) {
      return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
    }
  }

  if (loaderOptions.DumpAll()->is_set() || loaderOptions.DumpCode()->is_set()) {
    if (!code->SaveToFile(amd::hsa::DumpFileName(loaderOptions.DumpDir()->value(), LOADER_DUMP_PREFIX, "hsaco", codeNum))) {
      // Ignore error.
    }
  }
  if (loaderOptions.DumpAll()->is_set() || loaderOptions.DumpIsa()->is_set()) {
    if (!code->PrintToFile(amd::hsa::DumpFileName(loaderOptions.DumpDir()->value(), LOADER_DUMP_PREFIX, "isa", codeNum))) {
      // Ignore error.
    }
  }

  std::string codeIsa;
  unsigned genericVersion;
  if (!code->GetIsa(codeIsa, &genericVersion)) {
    logger_ << "LoaderError: failed to determine code object's ISA\n";
    return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
  }

  uint32_t majorVersion, minorVersion;
  if (!code->GetCodeObjectVersion(&majorVersion, &minorVersion)) {
    logger_ << "LoaderError: failed to determine code object's version\n";
    return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
  }

  if (majorVersion < 1 || majorVersion > 6) {
    logger_ << "LoaderError: unsupported code object version: " << majorVersion << "\n";
    return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
  }
  if (agent.handle == 0 && majorVersion == 1) {
    logger_ << "LoaderError: code object v1 requires non-null agent\n";
    return HSA_STATUS_ERROR_INVALID_AGENT;
  }

  uint32_t codeHsailMajor;
  uint32_t codeHsailMinor;
  hsa_profile_t codeProfile;
  hsa_machine_model_t codeMachineModel;
  hsa_default_float_rounding_mode_t codeRoundingMode;
  if (!code->GetNoteHsail(&codeHsailMajor, &codeHsailMinor, &codeProfile, &codeMachineModel, &codeRoundingMode)) {
    codeProfile = profile_;
  }
  if (profile_ != codeProfile) {
    logger_ << "LoaderError: mismatched profiles\n";
    return HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS;
  }

  hsa_isa_t objectsIsa = context_->IsaFromName(codeIsa.c_str());
  if (!objectsIsa.handle) {
    logger_ << "LoaderError: code object's ISA (" << codeIsa.c_str() << ") is invalid\n";
    return HSA_STATUS_ERROR_INVALID_ISA_NAME;
  }

  if (agent.handle != 0 && !context_->IsaSupportedByAgent(agent, objectsIsa, genericVersion)) {
    logger_ << "LoaderError: code object's ISA (" << codeIsa.c_str() << ") is not supported by the agent\n";
    return HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS;
  }

  hsa_status_t status;

  objects.push_back(new LoadedCodeObjectImpl(this, agent, code->ElfData(), code->ElfSize()));
  loaded_code_objects.push_back((LoadedCodeObjectImpl*)objects.back());

  status = LoadSegments(agent, code.get(), majorVersion);
  if (status != HSA_STATUS_SUCCESS) return status;

  for (size_t i = 0; i < code->SymbolCount(); ++i) {
    if (majorVersion >= 2 &&
        code->GetSymbol(i)->elfSym()->type() != STT_AMDGPU_HSA_KERNEL &&
        code->GetSymbol(i)->elfSym()->binding() == STB_LOCAL)
      continue;

    status = LoadSymbol(agent, code->GetSymbol(i), majorVersion);
    if (status != HSA_STATUS_SUCCESS) { return status; }
  }

  status = ApplyRelocations(agent, code.get());
  if (status != HSA_STATUS_SUCCESS) { return status; }

  code.reset();

  if (loaderOptions.DumpAll()->is_set() || loaderOptions.DumpExec()->is_set()) {
    if (!PrintToFile(amd::hsa::DumpFileName(loaderOptions.DumpDir()->value(), LOADER_DUMP_PREFIX, "exec", codeNum))) {
      // Ignore error.
    }
  }

  loaded_code_objects.back()->r_debug_info.l_addr = loaded_code_objects.back()->getDelta();
  loaded_code_objects.back()->r_debug_info.l_name = strdup(uri.c_str());
  loaded_code_objects.back()->r_debug_info.l_prev = nullptr;
  loaded_code_objects.back()->r_debug_info.l_next = nullptr;

  if (nullptr != loaded_code_object) { *loaded_code_object = LoadedCodeObject::Handle(loaded_code_objects.back()); }
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::LoadSegments(hsa_agent_t agent,
                                          const code::AmdHsaCode *c,
                                          uint32_t majorVersion) {
  if (majorVersion < 2)
    return LoadSegmentsV1(agent, c);
  else
    return LoadSegmentsV2(agent, c);
}

hsa_status_t ExecutableImpl::LoadSegmentsV1(hsa_agent_t agent,
                                            const code::AmdHsaCode *c) {
  hsa_status_t status = HSA_STATUS_SUCCESS;
  for (size_t i = 0; i < c->DataSegmentCount(); ++i) {
    status = LoadSegmentV1(agent, c->DataSegment(i));
    if (status != HSA_STATUS_SUCCESS) return status;
  }

  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::LoadSegmentsV2(hsa_agent_t agent,
                                            const code::AmdHsaCode *c) {
  assert(c->Machine() == ELF::EM_AMDGPU && "Program code objects are not supported");

  if (!c->DataSegmentCount()) return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;

  uint64_t vaddr = c->DataSegment(0)->vaddr();
  uint64_t size = c->DataSegment(c->DataSegmentCount() - 1)->vaddr() +
                  c->DataSegment(c->DataSegmentCount() - 1)->memSize();

  void *ptr = context_->SegmentAlloc(AMDGPU_HSA_SEGMENT_CODE_AGENT, agent, size,
      AMD_ISA_ALIGN_BYTES, true);
  if (!ptr) return HSA_STATUS_ERROR_OUT_OF_RESOURCES;

  Segment *load_segment = new Segment(this, agent, AMDGPU_HSA_SEGMENT_CODE_AGENT,
      ptr, size, vaddr, c->DataSegment(0)->offset());
  if (!load_segment) return HSA_STATUS_ERROR_OUT_OF_RESOURCES;

  hsa_status_t status = HSA_STATUS_SUCCESS;
  for (size_t i = 0; i < c->DataSegmentCount(); ++i) {
    status = LoadSegmentV2(c->DataSegment(i), load_segment);
    if (status != HSA_STATUS_SUCCESS) return status;
  }

  objects.push_back(load_segment);
  loaded_code_objects.back()->LoadedSegments().push_back(load_segment);

  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::LoadSegmentV1(hsa_agent_t agent,
                                           const code::Segment *s) {
  assert(s->type() < PT_LOOS + AMDGPU_HSA_SEGMENT_LAST);
  if (s->memSize() == 0)
    return HSA_STATUS_SUCCESS;
  amdgpu_hsa_elf_segment_t segment = (amdgpu_hsa_elf_segment_t)(s->type() - PT_LOOS);
  Segment *new_seg = nullptr;
  bool need_alloc = true;
  if (segment == AMDGPU_HSA_SEGMENT_GLOBAL_PROGRAM && nullptr != program_allocation_segment) {
    new_seg = program_allocation_segment;
    need_alloc = false;
  }
  if (need_alloc) {
    void* ptr = context_->SegmentAlloc(segment, agent, s->memSize(), s->align(), true);
    if (!ptr) { return HSA_STATUS_ERROR_OUT_OF_RESOURCES; }
    new_seg = new Segment(this, agent, segment, ptr, s->memSize(), s->vaddr(), s->offset());
    new_seg->Copy(s->vaddr(), s->data(), s->imageSize());
    objects.push_back(new_seg);

    if (segment == AMDGPU_HSA_SEGMENT_GLOBAL_PROGRAM) {
      program_allocation_segment = new_seg;
    }
  }
  assert(new_seg);
  loaded_code_objects.back()->LoadedSegments().push_back(new_seg);
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::LoadSegmentV2(const code::Segment *data_segment,
                                           loader::Segment *load_segment) {
  assert(data_segment && load_segment);
  load_segment->Copy(data_segment->vaddr(), data_segment->data(),
                     data_segment->imageSize());

  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::LoadSymbol(hsa_agent_t agent,
                                        code::Symbol* sym,
                                        uint32_t majorVersion)
{
  if (sym->IsDeclaration()) {
    return LoadDeclarationSymbol(agent, sym, majorVersion);
  } else {
    return LoadDefinitionSymbol(agent, sym, majorVersion);
  }
}

namespace {

bool string_ends_with(const std::string &str, const std::string &suf) {
  return str.size() >= suf.size() ? str.compare(str.size() - suf.size(), suf.size(), suf) == 0 : false;
}

}

hsa_status_t ExecutableImpl::LoadDefinitionSymbol(hsa_agent_t agent,
                                                  code::Symbol* sym,
                                                  uint32_t majorVersion)
{
  bool isAgent = sym->IsAgent();
  if (majorVersion >= 2) {
    isAgent = agent.handle != 0;
  }
  if (isAgent) {
    auto agent_symbol = agent_symbols_.find(std::make_pair(sym->Name(), agent));
    if (agent_symbol != agent_symbols_.end()) {
      // TODO(spec): this is not spec compliant.
      return HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED;
    }
  } else {
    auto program_symbol = program_symbols_.find(sym->Name());
    if (program_symbol != program_symbols_.end()) {
      // TODO(spec): this is not spec compliant.
      return HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED;
    }
  }

  uint64_t address = SymbolAddress(agent, sym);
  SymbolImpl *symbol = nullptr;
  if (string_ends_with(sym->GetSymbolName(), ".kd")) {
    // V3.
    llvm::amdhsa::kernel_descriptor_t kd;
    sym->GetSection()->getData(sym->SectionOffset(), &kd, sizeof(kd));

    uint32_t kernarg_segment_size = kd.kernarg_size; // FIXME: If 0 then the compiler is not specifying the size.
    uint32_t kernarg_segment_alignment = 16;         // FIXME: Use the minumum HSA required alignment.
    uint32_t group_segment_size = kd.group_segment_fixed_size;
    uint32_t private_segment_size = kd.private_segment_fixed_size;
    bool is_dynamic_callstack = AMDHSA_BITS_GET(kd.kernel_code_properties, rocr::llvm::amdhsa::KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
    bool uses_wave32 = AMDHSA_BITS_GET( kd.kernel_code_properties, rocr::llvm::amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);

    uint64_t size = sym->Size();

    KernelSymbol *kernel_symbol = new KernelSymbol(true,
                                    sym->GetModuleName(),
                                    sym->GetSymbolName(),
                                    sym->Linkage(),
                                    true, // sym->IsDefinition()
                                    kernarg_segment_size,
                                    kernarg_segment_alignment,
                                    group_segment_size,
                                    private_segment_size,
                                    is_dynamic_callstack,
                                    size,
                                    64,
                                    uses_wave32 ? 32 : 64,
                                    address);
    symbol = kernel_symbol;
  } else if (sym->IsVariableSymbol()) {
    symbol = new VariableSymbol(true,
                       sym->GetModuleName(),
                       sym->GetSymbolName(),
                       sym->Linkage(),
                       true, // sym->IsDefinition()
                       sym->Allocation(),
                       sym->Segment(),
                       sym->Size(),
                       sym->Alignment(),
                       sym->IsConst(),
                       false,
                       address);
  } else if (sym->IsKernelSymbol()) {
      amd_kernel_code_t akc;
      sym->GetSection()->getData(sym->SectionOffset(), &akc, sizeof(akc));

      uint32_t kernarg_segment_size =
        uint32_t(akc.kernarg_segment_byte_size);
      uint32_t kernarg_segment_alignment =
        uint32_t(1 << akc.kernarg_segment_alignment);
      uint32_t group_segment_size =
        uint32_t(akc.workgroup_group_segment_byte_size);
      uint32_t private_segment_size =
        uint32_t(akc.workitem_private_segment_byte_size);
      bool is_dynamic_callstack =
        AMD_HSA_BITS_GET(akc.kernel_code_properties, AMD_KERNEL_CODE_PROPERTIES_IS_DYNAMIC_CALLSTACK) ? true : false;
      bool uses_wave32 = akc.wavefront_size == AMD_POWERTWO_32;

      uint64_t size = sym->Size();

      if (!size && sym->SectionOffset() < sym->GetSection()->size()) {
        // ORCA Runtime relies on symbol size equal to size of kernel ISA. If symbol size is 0 in ELF,
        // calculate end of segment - symbol value.
        size = sym->GetSection()->size() - sym->SectionOffset();
      }
      KernelSymbol *kernel_symbol = new KernelSymbol(true,
                                      sym->GetModuleName(),
                                      sym->GetSymbolName(),
                                      sym->Linkage(),
                                      true, // sym->IsDefinition()
                                      kernarg_segment_size,
                                      kernarg_segment_alignment,
                                      group_segment_size,
                                      private_segment_size,
                                      is_dynamic_callstack,
                                      size,
                                      256,
                                      uses_wave32 ? 32 : 64,
                                      address);
      kernel_symbol->debug_info.elf_raw = code->ElfData();
      kernel_symbol->debug_info.elf_size = code->ElfSize();
      kernel_symbol->debug_info.kernel_name = kernel_symbol->full_name.c_str();
      kernel_symbol->debug_info.owning_segment = (void*)SymbolSegment(agent, sym)->Address(sym->GetSection()->addr());
      symbol = kernel_symbol;

      // \todo kzhuravl 10/15/15 This is a debugger backdoor: needs to be
      // removed.
      uint64_t target_address = sym->GetSection()->addr() + sym->SectionOffset() + ((size_t)(&((amd_kernel_code_t*)0)->runtime_loader_kernel_symbol));
      uint64_t source_value = (uint64_t) (uintptr_t) &kernel_symbol->debug_info;
      SymbolSegment(agent, sym)->Copy(target_address, &source_value, sizeof(source_value));
  } else {
    assert(!"Unexpected symbol type in LoadDefinitionSymbol");
    return HSA_STATUS_ERROR;
  }

  assert(symbol);
  if (isAgent) {
    symbol->agent = agent;
    agent_symbols_.insert(std::make_pair(std::make_pair(sym->Name(), agent), symbol));
  } else {
    program_symbols_.insert(std::make_pair(sym->Name(), symbol));
  }
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::LoadDeclarationSymbol(hsa_agent_t agent,
                                                   code::Symbol* sym,
                                                   uint32_t majorVersion)
{
  auto program_symbol = program_symbols_.find(sym->Name());
  if (program_symbol == program_symbols_.end()) {
    auto agent_symbol = agent_symbols_.find(std::make_pair(sym->Name(), agent));
    if (agent_symbol == agent_symbols_.end()) {
      logger_ << "LoaderError: symbol \"" << sym->Name() << "\" is undefined\n";

      // TODO(spec): this is not spec compliant.
      return HSA_STATUS_ERROR_VARIABLE_UNDEFINED;
    }
  }
  return HSA_STATUS_SUCCESS;
}

Segment* ExecutableImpl::VirtualAddressSegment(uint64_t vaddr)
{
  for (auto &seg : loaded_code_objects.back()->LoadedSegments()) {
    if (seg->IsAddressInSegment(vaddr)) {
      return seg;
    }
  }
  return 0;
}

uint64_t ExecutableImpl::SymbolAddress(hsa_agent_t agent, code::Symbol* sym)
{
  code::Section* sec = sym->GetSection();
  Segment* seg = SectionSegment(agent, sec);
  return nullptr == seg ? 0 : (uint64_t) (uintptr_t) seg->Address(sym->VAddr());
}

uint64_t ExecutableImpl::SymbolAddress(hsa_agent_t agent, elf::Symbol* sym)
{
  elf::Section* sec = sym->section();
  Segment* seg = SectionSegment(agent, sec);
  uint64_t vaddr = sec->addr() + sym->value();
  return nullptr == seg ? 0 : (uint64_t) (uintptr_t) seg->Address(vaddr);
}

Segment* ExecutableImpl::SymbolSegment(hsa_agent_t agent, code::Symbol* sym)
{
  return SectionSegment(agent, sym->GetSection());
}

Segment* ExecutableImpl::SectionSegment(hsa_agent_t agent, code::Section* sec)
{
  for (Segment* seg : loaded_code_objects.back()->LoadedSegments()) {
    if (seg->IsAddressInSegment(sec->addr())) {
      return seg;
    }
  }
  return 0;
}

hsa_status_t ExecutableImpl::ApplyRelocations(hsa_agent_t agent, amd::hsa::code::AmdHsaCode *c)
{
  hsa_status_t status = HSA_STATUS_SUCCESS;

  uint32_t majorVersion, minorVersion;
  if (!c->GetCodeObjectVersion(&majorVersion, &minorVersion)) {
    return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
  }

  for (size_t i = 0; i < c->RelocationSectionCount(); ++i) {
    if (c->GetRelocationSection(i)->targetSection()) {
      // Static relocations may be present if --emit-relocs
      // option was passed to lld, but they cannot be applied
      // again, so skip it for code object v2 and up.
      if (majorVersion >= 2) {
        continue;
      }

      status = ApplyStaticRelocationSection(agent, c->GetRelocationSection(i));
    } else {
      // Dynamic relocations are supported starting code object v2.1.
      if (majorVersion < 2) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }
      if (majorVersion == 2 && minorVersion < 1) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }
      status = ApplyDynamicRelocationSection(agent, c->GetRelocationSection(i));
    }
    if (status != HSA_STATUS_SUCCESS) { return status; }
  }
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::ApplyStaticRelocationSection(hsa_agent_t agent, amd::hsa::code::RelocationSection* sec)
{
  // Skip link-time relocations (if any).
  if (!(sec->targetSection()->flags() & SHF_ALLOC)) { return HSA_STATUS_SUCCESS; }
  hsa_status_t status = HSA_STATUS_SUCCESS;
  for (size_t i = 0; i < sec->relocationCount(); ++i) {
    status = ApplyStaticRelocation(agent, sec->relocation(i));
    if (status != HSA_STATUS_SUCCESS) { return status; }
  }
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::ApplyStaticRelocation(hsa_agent_t agent, amd::hsa::code::Relocation *rel)
{
  hsa_status_t status = HSA_STATUS_SUCCESS;
  amd::elf::Symbol* sym = rel->symbol();
  code::RelocationSection* rsec = rel->section();
  code::Section* sec = rsec->targetSection();
  Segment* rseg = SectionSegment(agent, sec);
  size_t reladdr = sec->addr() + rel->offset();
  switch (rel->type()) {
    case R_AMDGPU_V1_32_LOW:
    case R_AMDGPU_V1_32_HIGH:
    case R_AMDGPU_V1_64:
    {
      uint64_t addr;
      switch (sym->type()) {
        case STT_OBJECT:
        case STT_SECTION:
        case STT_AMDGPU_HSA_KERNEL:
        case STT_AMDGPU_HSA_INDIRECT_FUNCTION:
          addr = SymbolAddress(agent, sym);
          if (!addr) { return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; }
          break;
        case STT_COMMON: {
          hsa_agent_t *sagent = &agent;
          if (STA_AMDGPU_HSA_GLOBAL_PROGRAM == ELF64_ST_AMDGPU_ALLOCATION(sym->other())) {
            sagent = nullptr;
          }
          SymbolImpl* esym = (SymbolImpl*) GetSymbolInternal(sym->name().c_str(), sagent);
          if (!esym) {
            logger_ << "LoaderError: symbol \"" << sym->name() << "\" is undefined\n";
            return HSA_STATUS_ERROR_VARIABLE_UNDEFINED;
          }
          addr = esym->address;
          break;
        }
        default:
          return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }
      addr += rel->addend();

      uint32_t addr32 = 0;
      switch (rel->type()) {
        case R_AMDGPU_V1_32_HIGH:
          addr32 = uint32_t((addr >> 32) & 0xFFFFFFFF);
          rseg->Copy(reladdr, &addr32, sizeof(addr32));
          break;
        case R_AMDGPU_V1_32_LOW:
          addr32 = uint32_t(addr & 0xFFFFFFFF);
          rseg->Copy(reladdr, &addr32, sizeof(addr32));
          break;
        case R_AMDGPU_V1_64:
          rseg->Copy(reladdr, &addr, sizeof(addr));
          break;
        default:
          return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }
      break;
    }

    case R_AMDGPU_V1_INIT_SAMPLER:
    {
      if (STT_AMDGPU_HSA_METADATA != sym->type() ||
          SHT_PROGBITS != sym->section()->type() ||
          !(sym->section()->flags() & SHF_MERGE)) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }
      amdgpu_hsa_sampler_descriptor_t desc;
      if (!sym->section()->getData(sym->value(), &desc, sizeof(desc))) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }
      if (AMDGPU_HSA_METADATA_KIND_INIT_SAMP != desc.kind) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }

      hsa_ext_sampler_descriptor_t hsa_sampler_descriptor;
      hsa_sampler_descriptor.coordinate_mode =
        hsa_ext_sampler_coordinate_mode_t(desc.coord);
      hsa_sampler_descriptor.filter_mode =
        hsa_ext_sampler_filter_mode_t(desc.filter);
      hsa_sampler_descriptor.address_mode =
        hsa_ext_sampler_addressing_mode_t(desc.addressing);

      hsa_ext_sampler_t hsa_sampler = {0};
      status = context_->SamplerCreate(agent, &hsa_sampler_descriptor, &hsa_sampler);
      if (status != HSA_STATUS_SUCCESS) { return status; }
      assert(hsa_sampler.handle);
      rseg->Copy(reladdr, &hsa_sampler, sizeof(hsa_sampler));
      break;
    }

    case R_AMDGPU_V1_INIT_IMAGE:
    {
      if (STT_AMDGPU_HSA_METADATA != sym->type() ||
          SHT_PROGBITS != sym->section()->type() ||
          !(sym->section()->flags() & SHF_MERGE)) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }

      amdgpu_hsa_image_descriptor_t desc;
      if (!sym->section()->getData(sym->value(), &desc, sizeof(desc))) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }
      if (AMDGPU_HSA_METADATA_KIND_INIT_ROIMG != desc.kind &&
          AMDGPU_HSA_METADATA_KIND_INIT_WOIMG != desc.kind &&
          AMDGPU_HSA_METADATA_KIND_INIT_RWIMG != desc.kind) {
        return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
      }

      hsa_ext_image_format_t hsa_image_format;
      hsa_image_format.channel_order =
        hsa_ext_image_channel_order_t(desc.channel_order);
      hsa_image_format.channel_type =
        hsa_ext_image_channel_type_t(desc.channel_type);

      hsa_ext_image_descriptor_t hsa_image_descriptor;
      hsa_image_descriptor.geometry =
        hsa_ext_image_geometry_t(desc.geometry);
      hsa_image_descriptor.width = size_t(desc.width);
      hsa_image_descriptor.height = size_t(desc.height);
      hsa_image_descriptor.depth = size_t(desc.depth);
      hsa_image_descriptor.array_size = size_t(desc.array);
      hsa_image_descriptor.format = hsa_image_format;

      hsa_access_permission_t hsa_image_permission = HSA_ACCESS_PERMISSION_RO;
      switch (desc.kind) {
        case AMDGPU_HSA_METADATA_KIND_INIT_ROIMG: {
          hsa_image_permission = HSA_ACCESS_PERMISSION_RO;
          break;
        }
        case AMDGPU_HSA_METADATA_KIND_INIT_WOIMG: {
          hsa_image_permission = HSA_ACCESS_PERMISSION_WO;
          break;
        }
        case AMDGPU_HSA_METADATA_KIND_INIT_RWIMG: {
          hsa_image_permission = HSA_ACCESS_PERMISSION_RW;
          break;
        }
        default: {
          assert(false);
          return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
        }
      }

      hsa_ext_image_t hsa_image = {0};
      status = context_->ImageCreate(agent, hsa_image_permission,
                                  &hsa_image_descriptor,
                                  NULL, // TODO: image_data?
                                  &hsa_image);
      if (status != HSA_STATUS_SUCCESS) { return status; }
      rseg->Copy(reladdr, &hsa_image, sizeof(hsa_image));
      break;
    }

    default:
      // Ignore.
      break;
  }
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::ApplyDynamicRelocationSection(hsa_agent_t agent, amd::hsa::code::RelocationSection* sec)
{
  hsa_status_t status = HSA_STATUS_SUCCESS;
  for (size_t i = 0; i < sec->relocationCount(); ++i) {
    status = ApplyDynamicRelocation(agent, sec->relocation(i));
    if (status != HSA_STATUS_SUCCESS) { return status; }
  }
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::ApplyDynamicRelocation(hsa_agent_t agent, amd::hsa::code::Relocation *rel)
{
  Segment* relSeg = VirtualAddressSegment(rel->offset());
  uint64_t symAddr = 0;
  switch (rel->symbol()->type()) {
    case STT_OBJECT:
    case STT_AMDGPU_HSA_KERNEL:
    case STT_FUNC:
    {
      Segment* symSeg = VirtualAddressSegment(rel->symbol()->value());
      symAddr = reinterpret_cast<uint64_t>(symSeg->Address(rel->symbol()->value()));
      break;
    }

    // External symbols, they must be defined prior loading.
    case STT_NOTYPE:
    {
      // TODO: Only agent allocation variables are supported in v2.1. How will
      // we distinguish between program allocation and agent allocation
      // variables?
      auto agent_symbol = agent_symbols_.find(std::make_pair(rel->symbol()->name(), agent));
      if (agent_symbol != agent_symbols_.end())
        symAddr = agent_symbol->second->address;
      break;
    }

    default:
      // Only objects and kernels are supported in v2.1.
      return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
  }
  symAddr += rel->addend();

  switch (rel->type()) {
    case ELF::R_AMDGPU_ABS32_HI:
    {
      if (!symAddr) {
        logger_ << "LoaderError: symbol \"" << rel->symbol()->name() << "\" is undefined\n";
        return HSA_STATUS_ERROR_VARIABLE_UNDEFINED;
      }

      uint32_t symAddr32 = uint32_t((symAddr >> 32) & 0xFFFFFFFF);
      relSeg->Copy(rel->offset(), &symAddr32, sizeof(symAddr32));
      break;
    }

    case ELF::R_AMDGPU_ABS32_LO:
    {
      if (!symAddr) {
        logger_ << "LoaderError: symbol \"" << rel->symbol()->name() << "\" is undefined\n";
        return HSA_STATUS_ERROR_VARIABLE_UNDEFINED;
      }

      uint32_t symAddr32 = uint32_t(symAddr & 0xFFFFFFFF);
      relSeg->Copy(rel->offset(), &symAddr32, sizeof(symAddr32));
      break;
    }

    case ELF::R_AMDGPU_ABS32:
    {
      if (!symAddr) {
        logger_ << "LoaderError: symbol \"" << rel->symbol()->name() << "\" is undefined\n";
        return HSA_STATUS_ERROR_VARIABLE_UNDEFINED;
      }

      uint32_t symAddr32 = uint32_t(symAddr);
      relSeg->Copy(rel->offset(), &symAddr32, sizeof(symAddr32));
      break;
    }

    case ELF::R_AMDGPU_ABS64:
    {
      if (!symAddr) {
        logger_ << "LoaderError: symbol \"" << rel->symbol()->name() << "\" is undefined\n";
        return HSA_STATUS_ERROR_VARIABLE_UNDEFINED;
      }

      relSeg->Copy(rel->offset(), &symAddr, sizeof(symAddr));
      break;
    }

    case ELF::R_AMDGPU_RELATIVE64:
    {
      int64_t baseDelta = reinterpret_cast<uint64_t>(relSeg->Address(0)) - relSeg->VAddr();
      uint64_t relocatedAddr = baseDelta + rel->addend();
      relSeg->Copy(rel->offset(), &relocatedAddr, sizeof(relocatedAddr));
      break;
    }

    default:
      return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
  }
  return HSA_STATUS_SUCCESS;
}

hsa_status_t ExecutableImpl::Freeze(const char *options) {
  amd::hsa::common::WriterLockGuard<amd::hsa::common::ReaderWriterLock> writer_lock(rw_lock_);
  if (HSA_EXECUTABLE_STATE_FROZEN == state_) {
    return HSA_STATUS_ERROR_FROZEN_EXECUTABLE;
  }

  for (auto &lco : loaded_code_objects) {
    for (auto &ls : lco->LoadedSegments()) {
      ls->Freeze();
    }
  }

  state_ = HSA_EXECUTABLE_STATE_FROZEN;
  return HSA_STATUS_SUCCESS;
}

void ExecutableImpl::Print(std::ostream& out)
{
  out << "AMD Executable" << std::endl;
  out << "  Id: " << id()
      << "  Profile: " << HsaProfileToString(profile())
      << std::endl << std::endl;
  out << "Loaded Objects (total " << objects.size() << ")" << std::endl;
  size_t i = 0;
  for (ExecutableObject* o : objects) {
    out << "Loaded Object " << i++ << ": ";
    o->Print(out);
    out << std::endl;
  }
  out << "End AMD Executable" << std::endl;
}

bool ExecutableImpl::PrintToFile(const std::string& filename)
{
  std::ofstream out(filename);
  if (out.fail()) { return false; }
  Print(out);
  return out.fail();
}

} // namespace loader
} // namespace hsa
} // namespace amd
} // namespace rocr