1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#include "hsatimer.h"
PerfTimer::PerfTimer()
{
freq_in_100mhz = MeasureTSCFreqHz();
}
PerfTimer::~PerfTimer()
{
while(!_timers.empty())
{
Timer *temp = _timers.back();
_timers.pop_back();
delete temp;
}
}
//a new cretaed timer instantance index will be returned
int PerfTimer::CreateTimer()
{
Timer *newTimer = new Timer;
newTimer->_start = 0;
newTimer->_clocks = 0;
#ifdef _WIN32
QueryPerformanceFrequency((LARGE_INTEGER*)&newTimer->_freq);
#else
newTimer->_freq = (long long)1.0E3;
#endif
/* Push back the address of new Timer instance created */
_timers.push_back(newTimer);
return (int)(_timers.size() - 1);
}
int PerfTimer::StartTimer(int index)
{
if(index >= (int)_timers.size())
{
Error("Cannot reset timer. Invalid handle.");
return HSA_FAILURE;
}
#ifdef _WIN32
// General Windows timing method
#ifndef _AMD
long long tmpStart;
QueryPerformanceCounter((LARGE_INTEGER*)&(tmpStart));
_timers[index]->_start = (double)tmpStart;
#else
// AMD Windows timing method
#endif
#else
// General Linux timing method
#ifndef _AMD
struct timeval s;
gettimeofday(&s, 0);
_timers[index]->_start = s.tv_sec * 1.0E3 + ((double)(s.tv_usec / 1.0E3));
#else
// AMD timing method
unsigned int unused;
_timers[index]->_start = __rdtscp(&unused);
#endif
#endif
return HSA_SUCCESS;
}
int PerfTimer::StopTimer(int index)
{
double n=0;
if(index >= (int)_timers.size())
{
Error("Cannot reset timer. Invalid handle.");
return HSA_FAILURE;
}
#ifdef _WIN32
#ifndef _AMD
long long n1;
QueryPerformanceCounter((LARGE_INTEGER*)&(n1));
n = (double) n1;
#else
// AMD Window Timing
#endif
#else
// General Linux timing method
#ifndef _AMD
struct timeval s;
gettimeofday(&s, 0);
n = s.tv_sec * 1.0E3+ (double)(s.tv_usec/1.0E3);
#else
// AMD Linux timing
unsigned int unused;
n = __rdtscp(&unused);
#endif
#endif
n -= _timers[index]->_start;
_timers[index]->_start = 0;
#ifndef _AMD
_timers[index]->_clocks += n;
#else
//_timers[index]->_clocks += 10 * n /freq_in_100mhz; // unit is ns
_timers[index]->_clocks += 1.0E-6 * 10 * n /freq_in_100mhz; // convert to ms
cout << "_AMD is enabled!!!" << endl;
#endif
return HSA_SUCCESS;
}
void PerfTimer::Error(string str)
{
cout << str << endl;
}
double PerfTimer::ReadTimer(int index)
{
if(index >= (int)_timers.size())
{
Error("Cannot read timer. Invalid handle.");
return HSA_FAILURE;
}
double reading = double(_timers[index]->_clocks);
reading = double(reading / _timers[index]->_freq);
return reading;
}
uint64_t PerfTimer::CoarseTimestampUs()
{
#ifdef _WIN32
uint64_t freqHz, ticks;
QueryPerformanceFrequency((LARGE_INTEGER *)&freqHz);
QueryPerformanceCounter((LARGE_INTEGER *)&ticks);
// Scale numerator and divisor until (ticks * 1000000) fits in uint64_t.
while (ticks > (1ULL << 44)) {
ticks /= 16;
freqHz /= 16;
}
return (ticks * 1000000) / freqHz;
#else
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
return uint64_t(ts.tv_sec) * 1000000 + ts.tv_nsec / 1000;
#endif
}
uint64_t PerfTimer::MeasureTSCFreqHz()
{
// Make a coarse interval measurement of TSC ticks for 1 gigacycles.
unsigned int unused;
uint64_t tscTicksEnd;
uint64_t coarseBeginUs = CoarseTimestampUs();
uint64_t tscTicksBegin = __rdtscp(&unused);
do
{
tscTicksEnd = __rdtscp(&unused);
}
while (tscTicksEnd - tscTicksBegin < 1000000000);
uint64_t coarseEndUs = CoarseTimestampUs();
// Compute the TSC frequency and round to nearest 100MHz.
uint64_t coarseIntervalNs = (coarseEndUs - coarseBeginUs) * 1000;
uint64_t tscIntervalTicks = tscTicksEnd - tscTicksBegin;
return (tscIntervalTicks * 10 + (coarseIntervalNs / 2)) / coarseIntervalNs;
}
|