File: testing_laswp.hpp

package info (click to toggle)
rocsolver 6.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 17,876 kB
  • sloc: cpp: 151,850; python: 2,275; sh: 875; objc: 642; ansic: 402; makefile: 71; xml: 26
file content (351 lines) | stat: -rw-r--r-- 12,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/* **************************************************************************
 * Copyright (C) 2020-2024 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * *************************************************************************/

#pragma once

#include "common/misc/client_util.hpp"
#include "common/misc/clientcommon.hpp"
#include "common/misc/lapack_host_reference.hpp"
#include "common/misc/norm.hpp"
#include "common/misc/rocsolver.hpp"
#include "common/misc/rocsolver_arguments.hpp"
#include "common/misc/rocsolver_test.hpp"

template <typename T, typename U>
void laswp_checkBadArgs(const rocblas_handle handle,
                        const rocblas_int n,
                        T dA,
                        const rocblas_int lda,
                        const rocblas_int k1,
                        const rocblas_int k2,
                        U dIpiv,
                        const rocblas_int inc)
{
    // handle
    EXPECT_ROCBLAS_STATUS(rocsolver_laswp(nullptr, n, dA, lda, k1, k2, dIpiv, inc),
                          rocblas_status_invalid_handle);

    // values
    // N/A

    // pointers
    EXPECT_ROCBLAS_STATUS(rocsolver_laswp(handle, n, (T) nullptr, lda, k1, k2, dIpiv, inc),
                          rocblas_status_invalid_pointer);
    EXPECT_ROCBLAS_STATUS(rocsolver_laswp(handle, n, dA, lda, k1, k2, (U) nullptr, inc),
                          rocblas_status_invalid_pointer);

    // quick return with invalid pointers
    EXPECT_ROCBLAS_STATUS(rocsolver_laswp(handle, 0, (T) nullptr, lda, k1, k2, dIpiv, inc),
                          rocblas_status_success);
}

template <typename T>
void testing_laswp_bad_arg()
{
    // safe arguments
    rocblas_local_handle handle;
    rocblas_int n = 1;
    rocblas_int lda = 1;
    rocblas_int k1 = 1;
    rocblas_int k2 = 2;
    rocblas_int inc = 1;

    // memory allocation
    device_strided_batch_vector<T> dA(1, 1, 1, 1);
    device_strided_batch_vector<rocblas_int> dIpiv(1, 1, 1, 1);
    CHECK_HIP_ERROR(dA.memcheck());
    CHECK_HIP_ERROR(dIpiv.memcheck());

    // check bad arguments
    laswp_checkBadArgs(handle, n, dA.data(), lda, k1, k2, dIpiv.data(), inc);
}

template <bool CPU, bool GPU, typename T, typename Td, typename Ud, typename Th, typename Uh>
void laswp_initData(const rocblas_handle handle,
                    const rocblas_int n,
                    Td& dA,
                    const rocblas_int lda,
                    const rocblas_int k1,
                    const rocblas_int k2,
                    Ud& dIpiv,
                    const rocblas_int inc,
                    Th& hA,
                    Uh& hIpiv)
{
    if(CPU)
    {
        // for simplicity consider number of rows m = lda
        rocblas_init<T>(hA, true);
        rocblas_init<rocblas_int>(hIpiv, true);

        // put indices in range [1, x]
        // for simplicity, consider x = lda as this is the number of rows
        for(rocblas_int i = 0; i < hIpiv.n(); ++i)
            hIpiv[0][i] = hIpiv[0][i] * lda < 10 ? 1 : hIpiv[0][i] * lda / 10;
    }

    if(GPU)
    {
        // copy data from CPU to device
        CHECK_HIP_ERROR(dA.transfer_from(hA));
        CHECK_HIP_ERROR(dIpiv.transfer_from(hIpiv));
    }
}

template <typename T, typename Td, typename Ud, typename Th, typename Uh>
void laswp_getError(const rocblas_handle handle,
                    const rocblas_int n,
                    Td& dA,
                    const rocblas_int lda,
                    const rocblas_int k1,
                    const rocblas_int k2,
                    Ud& dIpiv,
                    const rocblas_int inc,
                    Th& hA,
                    Th& hAr,
                    Uh& hIpiv,
                    double* max_err)
{
    // initialize data
    laswp_initData<true, true, T>(handle, n, dA, lda, k1, k2, dIpiv, inc, hA, hIpiv);

    // execute computations
    // GPU lapack
    CHECK_ROCBLAS_ERROR(rocsolver_laswp(handle, n, dA.data(), lda, k1, k2, dIpiv.data(), inc));
    CHECK_HIP_ERROR(hAr.transfer_from(dA));

    // CPU lapack
    cpu_laswp(n, hA[0], lda, k1, k2, hIpiv[0], inc);

    // error |hA - hAr| (elements must be identical)
    *max_err = 0;
    double diff;
    for(int i = 0; i < lda; i++)
    {
        for(int j = 0; j < n; j++)
        {
            diff = std::abs(hAr[0][i + j * lda] - hA[0][i + j * lda]);
            *max_err = diff > *max_err ? diff : *max_err;
        }
    }
}

template <typename T, typename Td, typename Ud, typename Th, typename Uh>
void laswp_getPerfData(const rocblas_handle handle,
                       const rocblas_int n,
                       Td& dA,
                       const rocblas_int lda,
                       const rocblas_int k1,
                       const rocblas_int k2,
                       Ud& dIpiv,
                       const rocblas_int inc,
                       Th& hA,
                       Uh& hIpiv,
                       double* gpu_time_used,
                       double* cpu_time_used,
                       const rocblas_int hot_calls,
                       const int profile,
                       const bool profile_kernels,
                       const bool perf)
{
    if(!perf)
    {
        laswp_initData<true, false, T>(handle, n, dA, lda, k1, k2, dIpiv, inc, hA, hIpiv);

        // cpu-lapack performance (only if not in perf mode)
        *cpu_time_used = get_time_us_no_sync();
        cpu_laswp(n, hA[0], lda, k1, k2, hIpiv[0], inc);
        *cpu_time_used = get_time_us_no_sync() - *cpu_time_used;
    }

    laswp_initData<true, false, T>(handle, n, dA, lda, k1, k2, dIpiv, inc, hA, hIpiv);

    // cold calls
    for(int iter = 0; iter < 2; iter++)
    {
        laswp_initData<false, true, T>(handle, n, dA, lda, k1, k2, dIpiv, inc, hA, hIpiv);

        CHECK_ROCBLAS_ERROR(rocsolver_laswp(handle, n, dA.data(), lda, k1, k2, dIpiv.data(), inc));
    }

    // gpu-lapack performance
    hipStream_t stream;
    CHECK_ROCBLAS_ERROR(rocblas_get_stream(handle, &stream));
    double start;

    if(profile > 0)
    {
        if(profile_kernels)
            rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile
                                         | rocblas_layer_mode_ex_log_kernel);
        else
            rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile);
        rocsolver_log_set_max_levels(profile);
    }

    for(int iter = 0; iter < hot_calls; iter++)
    {
        laswp_initData<false, true, T>(handle, n, dA, lda, k1, k2, dIpiv, inc, hA, hIpiv);

        start = get_time_us_sync(stream);
        rocsolver_laswp(handle, n, dA.data(), lda, k1, k2, dIpiv.data(), inc);
        *gpu_time_used += get_time_us_sync(stream) - start;
    }
    *gpu_time_used /= hot_calls;
}

template <typename T>
void testing_laswp(Arguments& argus)
{
    // get arguments
    rocblas_local_handle handle;
    rocblas_int n = argus.get<rocblas_int>("n");
    rocblas_int k1 = argus.get<rocblas_int>("k1");
    rocblas_int k2 = argus.get<rocblas_int>("k2");
    rocblas_int lda = argus.get<rocblas_int>("lda", k2);
    rocblas_int inc = argus.get<rocblas_int>("incx");

    rocblas_int hot_calls = argus.iters;

    // check non-supported values
    // N/A

    // determine sizes
    size_t size_A = size_t(lda) * n;
    size_t size_P = k1 + size_t(k2 - k1) * abs(inc);
    double max_error = 0, gpu_time_used = 0, cpu_time_used = 0;

    size_t size_Ar = (argus.unit_check || argus.norm_check) ? size_A : 0;

    // check invalid sizes
    bool invalid_size = (n < 0 || lda < 1 || !inc || k1 < 1 || k2 < 1 || k2 < k1);
    if(invalid_size)
    {
        EXPECT_ROCBLAS_STATUS(
            rocsolver_laswp(handle, n, (T*)nullptr, lda, k1, k2, (rocblas_int*)nullptr, inc),
            rocblas_status_invalid_size);

        if(argus.timing)
            rocsolver_bench_inform(inform_invalid_size);

        return;
    }

    // memory size query is necessary
    if(argus.mem_query || !USE_ROCBLAS_REALLOC_ON_DEMAND)
    {
        CHECK_ROCBLAS_ERROR(rocblas_start_device_memory_size_query(handle));
        CHECK_ALLOC_QUERY(
            rocsolver_laswp(handle, n, (T*)nullptr, lda, k1, k2, (rocblas_int*)nullptr, inc));

        size_t size;
        CHECK_ROCBLAS_ERROR(rocblas_stop_device_memory_size_query(handle, &size));
        if(argus.mem_query)
        {
            rocsolver_bench_inform(inform_mem_query, size);
            return;
        }

        CHECK_ROCBLAS_ERROR(rocblas_set_device_memory_size(handle, size));
    }

    // memory allocations
    host_strided_batch_vector<T> hA(size_A, 1, size_A, 1);
    host_strided_batch_vector<T> hAr(size_Ar, 1, size_Ar, 1);
    host_strided_batch_vector<rocblas_int> hIpiv(size_P, 1, size_P, 1);
    device_strided_batch_vector<T> dA(size_A, 1, size_A, 1);
    device_strided_batch_vector<rocblas_int> dIpiv(size_P, 1, size_P, 1);
    if(size_A)
        CHECK_HIP_ERROR(dA.memcheck());
    if(size_P)
        CHECK_HIP_ERROR(dIpiv.memcheck());

    // check quick return
    if(n == 0)
    {
        EXPECT_ROCBLAS_STATUS(rocsolver_laswp(handle, n, dA.data(), lda, k1, k2, dIpiv.data(), inc),
                              rocblas_status_success);

        if(argus.timing)
            rocsolver_bench_inform(inform_quick_return);

        return;
    }

    // check computations
    if(argus.unit_check || argus.norm_check)
        laswp_getError<T>(handle, n, dA, lda, k1, k2, dIpiv, inc, hA, hAr, hIpiv, &max_error);

    // collect performance data
    if(argus.timing)
        laswp_getPerfData<T>(handle, n, dA, lda, k1, k2, dIpiv, inc, hA, hIpiv, &gpu_time_used,
                             &cpu_time_used, hot_calls, argus.profile, argus.profile_kernels,
                             argus.perf);

    // validate results for rocsolver-test
    // no tolerance
    if(argus.unit_check)
        ROCSOLVER_TEST_CHECK(T, max_error, 0);

    // output results for rocsolver-bench
    if(argus.timing)
    {
        if(!argus.perf)
        {
            rocsolver_bench_header("Arguments:");
            rocsolver_bench_output("n", "lda", "k1", "k2", "inc");
            rocsolver_bench_output(n, lda, k1, k2, inc);

            rocsolver_bench_header("Results:");
            if(argus.norm_check)
            {
                rocsolver_bench_output("cpu_time_us", "gpu_time_us", "error");
                rocsolver_bench_output(cpu_time_used, gpu_time_used, max_error);
            }
            else
            {
                rocsolver_bench_output("cpu_time_us", "gpu_time_us");
                rocsolver_bench_output(cpu_time_used, gpu_time_used);
            }
            rocsolver_bench_endl();
        }
        else
        {
            if(argus.norm_check)
                rocsolver_bench_output(gpu_time_used, max_error);
            else
                rocsolver_bench_output(gpu_time_used);
        }
    }

    // ensure all arguments were consumed
    argus.validate_consumed();
}

#define EXTERN_TESTING_LASWP(...) extern template void testing_laswp<__VA_ARGS__>(Arguments&);

INSTANTIATE(EXTERN_TESTING_LASWP, FOREACH_SCALAR_TYPE, APPLY_STAMP)