1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
/* **************************************************************************
* Copyright (C) 2020-2025 Advanced Micro Devices, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* *************************************************************************/
#pragma once
#include "common/matrix_utils/matrix_utils.hpp"
#include "common/misc/client_util.hpp"
#include "common/misc/clientcommon.hpp"
#include "common/misc/lapack_host_reference.hpp"
#include "common/misc/norm.hpp"
#include "common/misc/rocsolver.hpp"
#include "common/misc/rocsolver_arguments.hpp"
#include "common/misc/rocsolver_test.hpp"
template <bool STRIDED, typename T, typename S, typename U, typename I>
void gesdd_checkBadArgs(const rocblas_handle handle,
const rocblas_svect left_svect,
const rocblas_svect right_svect,
const rocblas_int m,
const rocblas_int n,
T dA,
const rocblas_int lda,
const rocblas_stride stA,
S dS,
const rocblas_stride stS,
U dU,
const rocblas_int ldu,
const rocblas_stride stU,
U dV,
const rocblas_int ldv,
const rocblas_stride stV,
I dinfo,
const rocblas_int bc)
{
// handle
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, nullptr, left_svect, right_svect, m, n, dA, lda,
stA, dS, stS, dU, ldu, stU, dV, ldv, stV, dinfo, bc),
rocblas_status_invalid_handle);
// values
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, rocblas_svect_overwrite, right_svect, m,
n, dA, lda, stA, dS, stS, dU, ldu, stU, dV, ldv, stV,
dinfo, bc),
rocblas_status_invalid_value);
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, rocblas_svect_overwrite, m,
n, dA, lda, stA, dS, stS, dU, ldu, stU, dV, ldv, stV,
dinfo, bc),
rocblas_status_invalid_value);
// sizes (only check batch_count if applicable)
if(STRIDED)
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA, lda,
stA, dS, stS, dU, ldu, stU, dV, ldv, stV, dinfo, -1),
rocblas_status_invalid_size);
// pointers
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, (T) nullptr,
lda, stA, dS, stS, dU, ldu, stU, dV, ldv, stV, dinfo, bc),
rocblas_status_invalid_pointer);
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA, lda, stA,
(S) nullptr, stS, dU, ldu, stU, dV, ldv, stV, dinfo, bc),
rocblas_status_invalid_pointer);
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA, lda, stA,
dS, stS, (U) nullptr, ldu, stU, dV, ldv, stV, dinfo, bc),
rocblas_status_invalid_pointer);
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA, lda, stA,
dS, stS, dU, ldu, stU, (U) nullptr, ldv, stV, dinfo, bc),
rocblas_status_invalid_pointer);
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA, lda,
stA, dS, stS, dU, ldu, stU, dV, ldv, stV, (I) nullptr, bc),
rocblas_status_invalid_pointer);
// quick return with invalid pointers
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, 0, n,
(T) nullptr, lda, stA, (S) nullptr, stS, (U) nullptr, ldu,
stU, dV, ldv, stV, dinfo, bc),
rocblas_status_success);
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, 0,
(T) nullptr, lda, stA, (S) nullptr, stS, dU, ldu, stU,
(U) nullptr, ldv, stV, dinfo, bc),
rocblas_status_success);
// quick return with zero batch_count if applicable
if(STRIDED)
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA,
lda, stA, dS, stS, dU, ldu, stU, dV, ldv, stV,
(I) nullptr, 0),
rocblas_status_success);
}
template <bool BATCHED, bool STRIDED, typename T>
void testing_gesdd_bad_arg()
{
using S = decltype(std::real(T{}));
// safe arguments
rocblas_local_handle handle;
rocblas_svect left_svect = rocblas_svect_singular;
rocblas_svect right_svect = rocblas_svect_singular;
rocblas_int m = 2;
rocblas_int n = 2;
rocblas_int lda = 2;
rocblas_int ldu = 2;
rocblas_int ldv = 2;
rocblas_stride stA = 2;
rocblas_stride stS = 2;
rocblas_stride stU = 2;
rocblas_stride stV = 2;
rocblas_int bc = 1;
if(BATCHED)
{
// memory allocations
device_batch_vector<T> dA(1, 1, 1);
device_strided_batch_vector<S> dS(1, 1, 1, 1);
device_strided_batch_vector<T> dU(1, 1, 1, 1);
device_strided_batch_vector<T> dV(1, 1, 1, 1);
device_strided_batch_vector<rocblas_int> dinfo(1, 1, 1, 1);
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dS.memcheck());
CHECK_HIP_ERROR(dU.memcheck());
CHECK_HIP_ERROR(dV.memcheck());
CHECK_HIP_ERROR(dinfo.memcheck());
// check bad arguments
gesdd_checkBadArgs<STRIDED>(handle, left_svect, right_svect, m, n, dA.data(), lda, stA,
dS.data(), stS, dU.data(), ldu, stU, dV.data(), ldv, stV,
dinfo.data(), bc);
}
else
{
// memory allocations
device_strided_batch_vector<T> dA(1, 1, 1, 1);
device_strided_batch_vector<S> dS(1, 1, 1, 1);
device_strided_batch_vector<T> dU(1, 1, 1, 1);
device_strided_batch_vector<T> dV(1, 1, 1, 1);
device_strided_batch_vector<rocblas_int> dinfo(1, 1, 1, 1);
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dS.memcheck());
CHECK_HIP_ERROR(dU.memcheck());
CHECK_HIP_ERROR(dV.memcheck());
CHECK_HIP_ERROR(dinfo.memcheck());
// check bad arguments
gesdd_checkBadArgs<STRIDED>(handle, left_svect, right_svect, m, n, dA.data(), lda, stA,
dS.data(), stS, dU.data(), ldu, stU, dV.data(), ldv, stV,
dinfo.data(), bc);
}
}
template <bool CPU, bool GPU, typename T, typename Td, typename Th>
void gesdd_initData(const rocblas_handle handle,
const rocblas_svect left_svect,
const rocblas_svect right_svect,
const rocblas_int m,
const rocblas_int n,
Td& dA,
const rocblas_int lda,
const rocblas_int bc,
Th& hA,
std::vector<T>& A,
const bool test = true,
const bool singular = false)
{
if(CPU)
{
rocblas_init<T>(hA, true);
for(rocblas_int b = 0; b < bc; ++b)
{
if(!singular)
{
// scale A to avoid singularities
for(rocblas_int i = 0; i < m; i++)
{
for(rocblas_int j = 0; j < n; j++)
{
if(i == j)
hA[b][i + j * lda] += 400;
else
hA[b][i + j * lda] -= 4;
}
}
}
else
{
// form a singular matrix consisting of all ones
for(rocblas_int i = 0; i < m; i++)
{
for(rocblas_int j = 0; j < n; j++)
{
hA[b][i + j * lda] = 1;
}
}
}
// make copy of original data to test vectors if required
if(test && (left_svect != rocblas_svect_none || right_svect != rocblas_svect_none))
{
for(rocblas_int i = 0; i < m; i++)
{
for(rocblas_int j = 0; j < n; j++)
A[b * lda * n + i + j * lda] = hA[b][i + j * lda];
}
}
}
}
if(GPU)
{
// now copy to the GPU
CHECK_HIP_ERROR(dA.transfer_from(hA));
}
}
template <bool STRIDED,
typename T,
typename SS,
typename Wd,
typename Td,
typename Ud,
typename Id,
typename Wh,
typename Th,
typename Uh,
typename Ih>
void gesdd_getError(const rocblas_handle handle,
const rocblas_svect left_svect,
const rocblas_svect right_svect,
const rocblas_int m,
const rocblas_int n,
Wd& dA,
const rocblas_int lda,
const rocblas_stride stA,
Td& dS,
const rocblas_stride stS,
Ud& dU,
const rocblas_int ldu,
const rocblas_stride stU,
Ud& dV,
const rocblas_int ldv,
const rocblas_stride stV,
Id& dinfo,
const rocblas_int bc,
const rocblas_svect left_svectT,
const rocblas_svect right_svectT,
const rocblas_int mT,
const rocblas_int nT,
Ud& dUT,
const rocblas_int lduT,
const rocblas_stride stUT,
Ud& dVT,
const rocblas_int ldvT,
const rocblas_stride stVT,
Wh& hA,
Th& hS,
Th& hSres,
Uh& hU,
Uh& Ures,
const rocblas_int ldures,
Uh& hV,
Uh& Vres,
const rocblas_int ldvres,
Ih& hinfo,
Ih& hinfoRes,
double* max_err,
double* max_errv)
{
using HMat = HostMatrix<T, rocblas_int>;
using BDesc = typename HMat::BlockDescriptor;
rocblas_int lwork = 5 * std::max(m, n);
rocblas_int lrwork = (rocblas_is_complex<T> ? 5 * std::min(m, n) : 0);
std::vector<T> work(lwork);
std::vector<SS> rwork(lrwork);
std::vector<T> A(lda * n * bc);
// input data initialization
gesdd_initData<true, true, T>(handle, left_svect, right_svect, m, n, dA, lda, bc, hA, A);
// If one of `left_svect` or `right_svect` was requested, this will guarantee
// that the other is computed as well
CHECK_ROCBLAS_ERROR(rocsolver_gesdd(STRIDED, handle, left_svectT, right_svectT, mT, nT,
dA.data(), lda, stA, dS.data(), stS, dUT.data(), lduT, stUT,
dVT.data(), ldvT, stVT, dinfo.data(), bc));
if(left_svect == rocblas_svect_none && right_svect != rocblas_svect_none)
CHECK_HIP_ERROR(Ures.transfer_from(dUT));
if(right_svect == rocblas_svect_none && left_svect != rocblas_svect_none)
CHECK_HIP_ERROR(Vres.transfer_from(dVT));
gesdd_initData<false, true, T>(handle, left_svect, right_svect, m, n, dA, lda, bc, hA, A);
// GPU lapack
CHECK_ROCBLAS_ERROR(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA.data(),
lda, stA, dS.data(), stS, dU.data(), ldu, stU, dV.data(),
ldv, stV, dinfo.data(), bc));
CHECK_HIP_ERROR(hSres.transfer_from(dS));
CHECK_HIP_ERROR(hinfoRes.transfer_from(dinfo));
if(left_svect == rocblas_svect_singular || left_svect == rocblas_svect_all)
CHECK_HIP_ERROR(Ures.transfer_from(dU));
if(right_svect == rocblas_svect_singular || right_svect == rocblas_svect_all)
CHECK_HIP_ERROR(Vres.transfer_from(dV));
*max_err = 0;
*max_errv = 0;
double err;
const bool no_singular_vectors
= (left_svect == rocblas_svect_none) && (right_svect == rocblas_svect_none);
for(rocblas_int b = 0; b < bc; ++b)
{
// We expect gesdd to converge for all input matrices
EXPECT_EQ(hinfoRes[b][0], 0) << "where b = " << b;
if(hinfoRes[b][0] != 0)
{
*max_err += 1;
continue;
}
err = 0.;
// Number of singular values (i.e., dimension of S) is always smallest
// number between rows and columns of input matrix A
rocblas_int dim_S = std::min(m, n);
rocblas_int ncols_U = dim_S;
rocblas_int nrows_V = dim_S;
// Only check singular values
if(no_singular_vectors)
{
// CPU lapack
cpu_gesvd(rocblas_svect_none, rocblas_svect_none, m, n, hA[b], lda, hS[b], hU[b], ldu,
hV[b], ldv, work.data(), lwork, rwork.data(), hinfo[b]);
// err = ||hS - hSres||_F / ||hS||_F
err = norm_error('F', 1, dim_S, 1, hS[b], hSres[b]);
*max_err = err > *max_err ? err : *max_err;
}
// Check singular vectors and singular values
else
{
// Get input matrix A
auto AWrap = HMat::Wrap(A.data() + b * lda * n, lda, n);
auto A = (*AWrap).block(BDesc().nrows(m).ncols(n));
// Get computed singular values (convert singular values from type
// S to type T, if required)
auto svals = *HMat::Convert(hSres[b], dim_S, 1);
auto S = HMat::Zeros(dim_S, dim_S);
S.diag(svals);
// Get computed eigenvectors
auto U = (*HMat::Wrap(Ures[b], ldures, ncols_U)).block(BDesc().nrows(m).ncols(ncols_U));
auto Vt = (*HMat::Wrap(Vres[b], ldvres, n)).block(BDesc().nrows(nrows_V).ncols(n));
// Check orthogonality of left singular vectors if they were requested
if(left_svect != rocblas_svect_none)
{
auto UE = adjoint(U) * U - HMat::Eye(ncols_U, ncols_U);
err = UE.max_col_norm();
*max_errv = err > *max_errv ? err : *max_errv;
}
// Check orthogonality of right singular vectors if they were requested
if(right_svect != rocblas_svect_none)
{
auto VE = Vt * adjoint(Vt) - HMat::Eye(nrows_V, nrows_V);
err = VE.max_col_norm();
*max_errv = err > *max_errv ? err : *max_errv;
}
// Check residual error of reconstructed A
double a_bound = 1.;
if(m >= n)
{
a_bound = (adjoint(A) * A).norm();
}
else // (m < n)
{
a_bound = (A * adjoint(A)).norm();
}
auto AE = A - U * S * Vt;
err = AE.norm() / a_bound;
*max_err = err > *max_err ? err : *max_err;
}
}
}
template <bool STRIDED,
typename T,
typename SS,
typename Wd,
typename Td,
typename Ud,
typename Id,
typename Wh,
typename Th,
typename Uh,
typename Ih>
void gesdd_getPerfData(const rocblas_handle handle,
const rocblas_svect left_svect,
const rocblas_svect right_svect,
const rocblas_int m,
const rocblas_int n,
Wd& dA,
const rocblas_int lda,
const rocblas_stride stA,
Td& dS,
const rocblas_stride stS,
Ud& dU,
const rocblas_int ldu,
const rocblas_stride stU,
Ud& dV,
const rocblas_int ldv,
const rocblas_stride stV,
Id& dinfo,
const rocblas_int bc,
Wh& hA,
Th& hS,
Uh& hU,
Uh& hV,
Ih& hinfo,
double* gpu_time_used,
double* cpu_time_used,
const rocblas_int hot_calls,
const int profile,
const bool profile_kernels,
const bool perf)
{
rocblas_int lwork = 5 * std::max(m, n);
rocblas_int lrwork = 5 * std::min(m, n);
std::vector<T> work(lwork);
std::vector<SS> rwork(lrwork);
std::vector<T> A;
if(!perf)
{
gesdd_initData<true, false, T>(handle, left_svect, right_svect, m, n, dA, lda, bc, hA, A, 0);
// cpu-lapack performance (only if not in perf mode)
*cpu_time_used = get_time_us_no_sync();
for(rocblas_int b = 0; b < bc; ++b)
cpu_gesvd(left_svect, right_svect, m, n, hA[b], lda, hS[b], hU[b], ldu, hV[b], ldv,
work.data(), lwork, rwork.data(), hinfo[b]);
*cpu_time_used = get_time_us_no_sync() - *cpu_time_used;
}
gesdd_initData<true, false, T>(handle, left_svect, right_svect, m, n, dA, lda, bc, hA, A, 0);
// cold calls
for(int iter = 0; iter < 2; iter++)
{
gesdd_initData<false, true, T>(handle, left_svect, right_svect, m, n, dA, lda, bc, hA, A, 0);
CHECK_ROCBLAS_ERROR(rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n,
dA.data(), lda, stA, dS.data(), stS, dU.data(), ldu,
stU, dV.data(), ldv, stV, dinfo.data(), bc));
}
// gpu-lapack performance
hipStream_t stream;
CHECK_ROCBLAS_ERROR(rocblas_get_stream(handle, &stream));
double start;
if(profile > 0)
{
if(profile_kernels)
rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile
| rocblas_layer_mode_ex_log_kernel);
else
rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile);
rocsolver_log_set_max_levels(profile);
}
for(rocblas_int iter = 0; iter < hot_calls; iter++)
{
gesdd_initData<false, true, T>(handle, left_svect, right_svect, m, n, dA, lda, bc, hA, A, 0);
start = get_time_us_sync(stream);
rocsolver_gesdd(STRIDED, handle, left_svect, right_svect, m, n, dA.data(), lda, stA,
dS.data(), stS, dU.data(), ldu, stU, dV.data(), ldv, stV, dinfo.data(), bc);
*gpu_time_used += get_time_us_sync(stream) - start;
}
*gpu_time_used /= hot_calls;
}
template <bool BATCHED, bool STRIDED, typename T>
void testing_gesdd(Arguments& argus)
{
using S = decltype(std::real(T{}));
// get arguments
rocblas_local_handle handle;
char leftvC = argus.get<char>("left_svect");
char rightvC = argus.get<char>("right_svect");
rocblas_int m = argus.get<rocblas_int>("m");
rocblas_int n = argus.get<rocblas_int>("n", m);
rocblas_int lda = argus.get<rocblas_int>("lda", m);
rocblas_int ldu = argus.get<rocblas_int>("ldu", m);
rocblas_int ldv = argus.get<rocblas_int>("ldv", (rightvC == 'A' ? n : std::min(m, n)));
rocblas_stride stA = argus.get<rocblas_stride>("strideA", lda * n);
rocblas_stride stS = argus.get<rocblas_stride>("strideS", std::min(m, n));
rocblas_stride stU
= argus.get<rocblas_stride>("strideU", (leftvC == 'A' ? ldu * m : ldu * std::min(m, n)));
rocblas_stride stV = argus.get<rocblas_stride>("strideV", ldv * n);
rocblas_svect leftv = char2rocblas_svect(leftvC);
rocblas_svect rightv = char2rocblas_svect(rightvC);
rocblas_int bc = argus.batch_count;
rocblas_int hot_calls = argus.iters;
// check non-supported values
if((rightv != rocblas_svect_none && rightv != rocblas_svect_singular && rightv != rocblas_svect_all)
|| (leftv != rocblas_svect_none && leftv != rocblas_svect_singular
&& leftv != rocblas_svect_all))
{
if(BATCHED)
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, leftv, rightv, m, n,
(T* const*)nullptr, lda, stA,
(S*)nullptr, stS, (T*)nullptr, ldu, stU,
(T*)nullptr, ldv, stV, (rocblas_int*)nullptr, bc),
rocblas_status_invalid_value);
else
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, leftv, rightv, m, n, (T*)nullptr,
lda, stA, (S*)nullptr, stS, (T*)nullptr, ldu, stU,
(T*)nullptr, ldv, stV, (rocblas_int*)nullptr, bc),
rocblas_status_invalid_value);
if(argus.timing)
rocsolver_bench_inform(inform_invalid_args);
return;
}
/** Orthogonality and reconstruction errors will be computed explicitly as
* part of `gesdd_getError` method, which may require an extra call to
* `rocsolver_gesdd` for the cases in which only one of `left_svect` or
* `right_svect` is requested. If such extra call is required, initialize
* variables `leftvT`, `rightvT`, `ldvT`, `lduT`, `mT`, and `nT`
* accordingly.
**/
rocblas_svect leftvT = rocblas_svect_none;
rocblas_svect rightvT = rocblas_svect_none;
rocblas_int ldvT = 1;
rocblas_int lduT = 1;
rocblas_int mT = 0;
rocblas_int nT = 0;
bool svects = (leftv != rocblas_svect_none || rightv != rocblas_svect_none);
if(svects)
{
if(leftv == rocblas_svect_none)
{
leftvT = rocblas_svect_singular;
lduT = m;
mT = m;
nT = n;
}
if(rightv == rocblas_svect_none)
{
rightvT = rocblas_svect_singular;
ldvT = std::min(m, n);
mT = m;
nT = n;
}
}
// determine sizes
rocblas_int ldures = 1;
rocblas_int ldvres = 1;
size_t size_Sres = 0;
size_t size_Ures = 0;
size_t size_Vres = 0;
size_t size_UT = 0;
size_t size_VT = 0;
size_t size_A = size_t(lda) * n;
size_t size_S = size_t(std::min(m, n));
size_t size_U = (leftvC == 'A' ? size_t(ldu) * m : size_t(ldu) * std::min(m, n));
size_t size_V = size_t(ldv) * n;
if(argus.unit_check || argus.norm_check)
{
size_Sres = size_S;
if(svects)
{
if(leftv == rocblas_svect_none)
{
size_UT = size_t(lduT) * std::min(mT, nT);
size_Ures = size_UT;
ldures = lduT;
}
else
{
size_Ures = size_U;
ldures = ldu;
}
if(rightv == rocblas_svect_none)
{
size_VT = size_t(ldvT) * nT;
size_Vres = size_VT;
ldvres = ldvT;
}
else
{
size_Vres = size_V;
ldvres = ldv;
}
}
}
rocblas_stride stUT = size_UT;
rocblas_stride stVT = size_VT;
rocblas_stride stUres = size_Ures;
rocblas_stride stVres = size_Vres;
double max_error = 0, gpu_time_used = 0, cpu_time_used = 0, max_errorv = 0;
// check invalid sizes
bool invalid_size = (n < 0 || m < 0 || lda < m || ldu < 1 || ldv < 1 || bc < 0)
|| ((leftv == rocblas_svect_all || leftv == rocblas_svect_singular) && ldu < m)
|| ((rightv == rocblas_svect_all && ldv < n)
|| (rightv == rocblas_svect_singular && ldv < std::min(m, n)));
if(invalid_size)
{
if(BATCHED)
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, leftv, rightv, m, n,
(T* const*)nullptr, lda, stA, (S*)nullptr, stS,
(T*)nullptr, ldu, stU, (T*)nullptr, ldv, stV,
(rocblas_int*)nullptr, bc),
rocblas_status_invalid_size);
else
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, leftv, rightv, m, n, (T*)nullptr,
lda, stA, (S*)nullptr, stS, (T*)nullptr, ldu, stU,
(T*)nullptr, ldv, stV, (rocblas_int*)nullptr, bc),
rocblas_status_invalid_size);
if(argus.timing)
rocsolver_bench_inform(inform_invalid_size);
return;
}
// memory size query is necessary
if(argus.mem_query || !USE_ROCBLAS_REALLOC_ON_DEMAND)
{
CHECK_ROCBLAS_ERROR(rocblas_start_device_memory_size_query(handle));
if(BATCHED)
{
CHECK_ALLOC_QUERY(rocsolver_gesdd(
STRIDED, handle, leftv, rightv, m, n, (T* const*)nullptr, lda, stA, (S*)nullptr,
stS, (T*)nullptr, ldu, stU, (T*)nullptr, ldv, stV, (rocblas_int*)nullptr, bc));
CHECK_ALLOC_QUERY(rocsolver_gesdd(
STRIDED, handle, leftvT, rightvT, mT, nT, (T* const*)nullptr, lda, stA, (S*)nullptr,
stS, (T*)nullptr, lduT, stUT, (T*)nullptr, ldvT, stVT, (rocblas_int*)nullptr, bc));
}
else
{
CHECK_ALLOC_QUERY(rocsolver_gesdd(STRIDED, handle, leftv, rightv, m, n, (T*)nullptr,
lda, stA, (S*)nullptr, stS, (T*)nullptr, ldu, stU,
(T*)nullptr, ldv, stV, (rocblas_int*)nullptr, bc));
CHECK_ALLOC_QUERY(rocsolver_gesdd(STRIDED, handle, leftvT, rightvT, mT, nT, (T*)nullptr,
lda, stA, (S*)nullptr, stS, (T*)nullptr, lduT, stUT,
(T*)nullptr, ldvT, stVT, (rocblas_int*)nullptr, bc));
}
size_t size;
CHECK_ROCBLAS_ERROR(rocblas_stop_device_memory_size_query(handle, &size));
if(argus.mem_query)
{
rocsolver_bench_inform(inform_mem_query, size);
return;
}
CHECK_ROCBLAS_ERROR(rocblas_set_device_memory_size(handle, size));
}
// memory allocations (all cases)
// host
host_strided_batch_vector<S> hS(size_S, 1, stS, bc);
host_strided_batch_vector<T> hV(size_V, 1, stV, bc);
host_strided_batch_vector<T> hU(size_U, 1, stU, bc);
host_strided_batch_vector<rocblas_int> hinfo(1, 1, 1, bc);
host_strided_batch_vector<rocblas_int> hinfoRes(1, 1, 1, bc);
host_strided_batch_vector<S> hSres(size_Sres, 1, stS, bc);
host_strided_batch_vector<T> Vres(size_Vres, 1, stVres, bc);
host_strided_batch_vector<T> Ures(size_Ures, 1, stUres, bc);
// device
device_strided_batch_vector<S> dS(size_S, 1, stS, bc);
device_strided_batch_vector<T> dV(size_V, 1, stV, bc);
device_strided_batch_vector<T> dU(size_U, 1, stU, bc);
device_strided_batch_vector<rocblas_int> dinfo(1, 1, 1, bc);
device_strided_batch_vector<T> dVT(size_VT, 1, stVT, bc);
device_strided_batch_vector<T> dUT(size_UT, 1, stUT, bc);
if(size_VT)
CHECK_HIP_ERROR(dVT.memcheck());
if(size_UT)
CHECK_HIP_ERROR(dUT.memcheck());
if(size_S)
CHECK_HIP_ERROR(dS.memcheck());
if(size_V)
CHECK_HIP_ERROR(dV.memcheck());
if(size_U)
CHECK_HIP_ERROR(dU.memcheck());
CHECK_HIP_ERROR(dinfo.memcheck());
if(BATCHED)
{
// memory allocations
host_batch_vector<T> hA(size_A, 1, bc);
device_batch_vector<T> dA(size_A, 1, bc);
if(size_A)
CHECK_HIP_ERROR(dA.memcheck());
// check quick return
if(n == 0 || m == 0 || bc == 0)
{
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, leftv, rightv, m, n, dA.data(),
lda, stA, dS.data(), stS, dU.data(), ldu, stU,
dV.data(), ldv, stV, dinfo.data(), bc),
rocblas_status_success);
if(argus.timing)
rocsolver_bench_inform(inform_quick_return);
return;
}
// check computations
if(argus.unit_check || argus.norm_check)
{
gesdd_getError<STRIDED, T, S>(
handle, leftv, rightv, m, n, dA, lda, stA, dS, stS, dU, ldu, stU, dV, ldv, stV,
dinfo, bc, leftvT, rightvT, mT, nT, dUT, lduT, stUT, dVT, ldvT, stVT, hA, hS, hSres,
hU, Ures, ldures, hV, Vres, ldvres, hinfo, hinfoRes, &max_error, &max_errorv);
}
// collect performance data
if(argus.timing)
{
gesdd_getPerfData<STRIDED, T, S>(handle, leftv, rightv, m, n, dA, lda, stA, dS, stS, dU,
ldu, stU, dV, ldv, stV, dinfo, bc, hA, hS, hU, hV,
hinfo, &gpu_time_used, &cpu_time_used, hot_calls,
argus.profile, argus.profile_kernels, argus.perf);
}
}
else
{
// memory allocations
host_strided_batch_vector<T> hA(size_A, 1, stA, bc);
device_strided_batch_vector<T> dA(size_A, 1, stA, bc);
if(size_A)
CHECK_HIP_ERROR(dA.memcheck());
// check quick return
if(n == 0 || m == 0 || bc == 0)
{
EXPECT_ROCBLAS_STATUS(rocsolver_gesdd(STRIDED, handle, leftv, rightv, m, n, dA.data(),
lda, stA, dS.data(), stS, dU.data(), ldu, stU,
dV.data(), ldv, stV, dinfo.data(), bc),
rocblas_status_success);
if(argus.timing)
rocsolver_bench_inform(inform_quick_return);
return;
}
// check computations
if(argus.unit_check || argus.norm_check)
{
gesdd_getError<STRIDED, T, S>(
handle, leftv, rightv, m, n, dA, lda, stA, dS, stS, dU, ldu, stU, dV, ldv, stV,
dinfo, bc, leftvT, rightvT, mT, nT, dUT, lduT, stUT, dVT, ldvT, stVT, hA, hS, hSres,
hU, Ures, ldures, hV, Vres, ldvres, hinfo, hinfoRes, &max_error, &max_errorv);
}
// collect performance data
if(argus.timing)
{
gesdd_getPerfData<STRIDED, T, S>(handle, leftv, rightv, m, n, dA, lda, stA, dS, stS, dU,
ldu, stU, dV, ldv, stV, dinfo, bc, hA, hS, hU, hV,
hinfo, &gpu_time_used, &cpu_time_used, hot_calls,
argus.profile, argus.profile_kernels, argus.perf);
}
}
// validate results for rocsolver-test
// using 3 * min(m, n) * machine_precision as tolerance
if(argus.unit_check)
{
ROCSOLVER_TEST_CHECK(T, max_error, 3 * std::min(m, n));
if(svects)
ROCSOLVER_TEST_CHECK(T, max_errorv, 3 * std::min(m, n));
}
// output results for rocsolver-bench
if(argus.timing)
{
if(svects)
max_error = (max_error >= max_errorv) ? max_error : max_errorv;
if(!argus.perf)
{
rocsolver_bench_header("Arguments:");
if(BATCHED)
{
rocsolver_bench_output("left_svect", "right_svect", "m", "n", "lda", "strideS",
"ldu", "strideU", "ldv", "strideV", "batch_c");
rocsolver_bench_output(leftvC, rightvC, m, n, lda, stS, ldu, stU, ldv, stV, bc);
}
else if(STRIDED)
{
rocsolver_bench_output("left_svect", "right_svect", "m", "n", "lda", "strideA",
"strideS", "ldu", "strideU", "ldv", "strideV", "batch_c");
rocsolver_bench_output(leftvC, rightvC, m, n, lda, stA, stS, ldu, stU, ldv, stV, bc);
}
else
{
rocsolver_bench_output("left_svect", "right_svect", "m", "n", "lda", "ldu", "ldv");
rocsolver_bench_output(leftvC, rightvC, m, n, lda, ldu, ldv);
}
rocsolver_bench_header("Results:");
if(argus.norm_check)
{
rocsolver_bench_output("cpu_time_us", "gpu_time_us", "error");
rocsolver_bench_output(cpu_time_used, gpu_time_used, max_error);
}
else
{
rocsolver_bench_output("cpu_time_us", "gpu_time_us");
rocsolver_bench_output(cpu_time_used, gpu_time_used);
}
rocsolver_bench_endl();
}
else
{
if(argus.norm_check)
rocsolver_bench_output(gpu_time_used, max_error);
else
rocsolver_bench_output(gpu_time_used);
}
}
// ensure all arguments were consumed
argus.validate_consumed();
}
#define EXTERN_TESTING_GESDD(...) extern template void testing_gesdd<__VA_ARGS__>(Arguments&);
INSTANTIATE(EXTERN_TESTING_GESDD, FOREACH_MATRIX_DATA_LAYOUT, FOREACH_SCALAR_TYPE, APPLY_STAMP)
|