File: testing_potri.hpp

package info (click to toggle)
rocsolver 6.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 17,876 kB
  • sloc: cpp: 151,850; python: 2,275; sh: 875; objc: 642; ansic: 402; makefile: 71; xml: 26
file content (503 lines) | stat: -rw-r--r-- 18,877 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/* **************************************************************************
 * Copyright (C) 2020-2024 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * *************************************************************************/

#pragma once

#include "common/misc/client_util.hpp"
#include "common/misc/clientcommon.hpp"
#include "common/misc/lapack_host_reference.hpp"
#include "common/misc/norm.hpp"
#include "common/misc/rocsolver.hpp"
#include "common/misc/rocsolver_arguments.hpp"
#include "common/misc/rocsolver_test.hpp"

template <bool STRIDED, typename T, typename U>
void potri_checkBadArgs(const rocblas_handle handle,
                        const rocblas_fill uplo,
                        const rocblas_int n,
                        T dA,
                        const rocblas_int lda,
                        const rocblas_stride stA,
                        U dinfo,
                        const rocblas_int bc)
{
    // handle
    EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, nullptr, uplo, n, dA, lda, stA, dinfo, bc),
                          rocblas_status_invalid_handle);

    // values
    EXPECT_ROCBLAS_STATUS(
        rocsolver_potri(STRIDED, handle, rocblas_fill_full, n, dA, lda, stA, dinfo, bc),
        rocblas_status_invalid_value);

    // sizes (only check batch_count if applicable)
    if(STRIDED)
        EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, dinfo, -1),
                              rocblas_status_invalid_size);

    // pointers
    EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T) nullptr, lda, stA, dinfo, bc),
                          rocblas_status_invalid_pointer);
    EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, (U) nullptr, bc),
                          rocblas_status_invalid_pointer);

    // quick return with invalid pointers
    EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, 0, (T) nullptr, lda, stA, dinfo, bc),
                          rocblas_status_success);
    if(STRIDED)
        EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, (U) nullptr, 0),
                              rocblas_status_success);

    // quick return with zero batch_count if applicable
    if(STRIDED)
        EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, dinfo, 0),
                              rocblas_status_success);
}

template <bool BATCHED, bool STRIDED, typename T>
void testing_potri_bad_arg()
{
    // safe arguments
    rocblas_local_handle handle;
    rocblas_fill uplo = rocblas_fill_upper;
    rocblas_int n = 1;
    rocblas_int lda = 1;
    rocblas_stride stA = 1;
    rocblas_int bc = 1;

    if(BATCHED)
    {
        // memory allocations
        device_batch_vector<T> dA(1, 1, 1);
        device_strided_batch_vector<rocblas_int> dinfo(1, 1, 1, 1);
        CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dinfo.memcheck());

        // check bad arguments
        potri_checkBadArgs<STRIDED>(handle, uplo, n, dA.data(), lda, stA, dinfo.data(), bc);
    }
    else
    {
        // memory allocations
        device_strided_batch_vector<T> dA(1, 1, 1, 1);
        device_strided_batch_vector<rocblas_int> dinfo(1, 1, 1, 1);
        CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dinfo.memcheck());

        // check bad arguments
        potri_checkBadArgs<STRIDED>(handle, uplo, n, dA.data(), lda, stA, dinfo.data(), bc);
    }
}

template <bool CPU, bool GPU, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potri_initData(const rocblas_handle handle,
                    const rocblas_fill uplo,
                    const rocblas_int n,
                    Td& dA,
                    const rocblas_int lda,
                    const rocblas_stride stA,
                    Ud& dInfo,
                    const rocblas_int bc,
                    Th& hA,
                    Uh& hInfo,
                    const bool singular)
{
    if(CPU)
    {
        rocblas_init<T>(hA, true);

        for(rocblas_int b = 0; b < bc; ++b)
        {
            // scale to ensure positive definiteness
            for(rocblas_int i = 0; i < n; i++)
                hA[b][i + i * lda] = hA[b][i + i * lda] * sconj(hA[b][i + i * lda]) * 400;

            // do the Cholesky factorization of matrix A w/ the reference LAPACK routine
            cpu_potrf(uplo, n, hA[b], lda, hInfo[b]);

            if(singular && (b == bc / 4 || b == bc / 2 || b == bc - 1))
            {
                // add some singularities
                // always the same elements for debugging purposes
                // the algorithm must detect the first zero elemtent in those
                // matrices in the batch that are singular
                rocblas_int i = n / 4 + b;
                i -= (i / n) * n;
                hA[b][i + i * lda] = 0;
                i = n / 2 + b;
                i -= (i / n) * n;
                hA[b][i + i * lda] = 0;
                i = n - 1 + b;
                i -= (i / n) * n;
                hA[b][i + i * lda] = 0;
            }
        }
    }

    if(GPU)
    {
        // now copy data to the GPU
        CHECK_HIP_ERROR(dA.transfer_from(hA));
    }
}

template <bool STRIDED, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potri_getError(const rocblas_handle handle,
                    const rocblas_fill uplo,
                    const rocblas_int n,
                    Td& dA,
                    const rocblas_int lda,
                    const rocblas_stride stA,
                    Ud& dInfo,
                    const rocblas_int bc,
                    Th& hA,
                    Th& hARes,
                    Uh& hInfo,
                    Uh& hInfoRes,
                    double* max_err,
                    const bool singular)
{
    // input data initialization
    potri_initData<true, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);

    // execute computations
    // GPU lapack
    CHECK_ROCBLAS_ERROR(
        rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc));
    CHECK_HIP_ERROR(hARes.transfer_from(dA));
    CHECK_HIP_ERROR(hInfoRes.transfer_from(dInfo));

    // CPU lapack
    for(rocblas_int b = 0; b < bc; ++b)
    {
        cpu_potri(uplo, n, hA[b], lda, hInfo[b]);
    }

    // check info for singularities
    double err = 0;
    *max_err = 0;
    for(rocblas_int b = 0; b < bc; ++b)
    {
        EXPECT_EQ(hInfo[b][0], hInfoRes[b][0]) << "where b = " << b;
        if(hInfo[b][0] != hInfoRes[b][0])
            err++;
    }
    *max_err += err;

    // error is ||hA - hARes|| / ||hA||
    // (THIS DOES NOT ACCOUNT FOR NUMERICAL REPRODUCIBILITY ISSUES.
    // IT MIGHT BE REVISITED IN THE FUTURE)
    // using frobenius norm
    for(rocblas_int b = 0; b < bc; ++b)
    {
        if(hInfoRes[b][0] == 0)
        {
            err = norm_error('F', n, n, lda, hA[b], hARes[b]);
            *max_err = err > *max_err ? err : *max_err;
        }
    }
}

template <bool STRIDED, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potri_getPerfData(const rocblas_handle handle,
                       const rocblas_fill uplo,
                       const rocblas_int n,
                       Td& dA,
                       const rocblas_int lda,
                       const rocblas_stride stA,
                       Ud& dInfo,
                       const rocblas_int bc,
                       Th& hA,
                       Uh& hInfo,
                       double* gpu_time_used,
                       double* cpu_time_used,
                       const rocblas_int hot_calls,
                       const int profile,
                       const bool profile_kernels,
                       const bool perf,
                       const bool singular)
{
    if(!perf)
    {
        potri_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);

        // cpu-lapack performance (only if not in perf mode)
        *cpu_time_used = get_time_us_no_sync();
        for(rocblas_int b = 0; b < bc; ++b)
        {
            cpu_potri(uplo, n, hA[b], lda, hInfo[b]);
        }
        *cpu_time_used = get_time_us_no_sync() - *cpu_time_used;
    }

    potri_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);

    // cold calls
    for(int iter = 0; iter < 2; iter++)
    {
        potri_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);

        CHECK_ROCBLAS_ERROR(
            rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc));
    }

    // gpu-lapack performance
    hipStream_t stream;
    CHECK_ROCBLAS_ERROR(rocblas_get_stream(handle, &stream));
    double start;

    if(profile > 0)
    {
        if(profile_kernels)
            rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile
                                         | rocblas_layer_mode_ex_log_kernel);
        else
            rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile);
        rocsolver_log_set_max_levels(profile);
    }

    for(rocblas_int iter = 0; iter < hot_calls; iter++)
    {
        potri_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);

        start = get_time_us_sync(stream);
        rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc);
        *gpu_time_used += get_time_us_sync(stream) - start;
    }
    *gpu_time_used /= hot_calls;
}

template <bool BATCHED, bool STRIDED, typename T>
void testing_potri(Arguments& argus)
{
    // get arguments
    rocblas_local_handle handle;
    char uploC = argus.get<char>("uplo");
    rocblas_int n = argus.get<rocblas_int>("n");
    rocblas_int lda = argus.get<rocblas_int>("lda", n);
    rocblas_stride stA = argus.get<rocblas_stride>("strideA", lda * n);

    rocblas_fill uplo = char2rocblas_fill(uploC);
    rocblas_int bc = argus.batch_count;
    rocblas_int hot_calls = argus.iters;

    rocblas_stride stARes = (argus.unit_check || argus.norm_check) ? stA : 0;

    // check non-supported values
    if(uplo != rocblas_fill_upper && uplo != rocblas_fill_lower)
    {
        if(BATCHED)
            EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T* const*)nullptr, lda,
                                                  stA, (rocblas_int*)nullptr, bc),
                                  rocblas_status_invalid_value);
        else
            EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T*)nullptr, lda, stA,
                                                  (rocblas_int*)nullptr, bc),
                                  rocblas_status_invalid_value);

        if(argus.timing)
            rocsolver_bench_inform(inform_invalid_args);

        return;
    }

    // determine sizes
    size_t size_A = size_t(lda) * n;
    double max_error = 0, gpu_time_used = 0, cpu_time_used = 0;

    size_t size_ARes = (argus.unit_check || argus.norm_check) ? size_A : 0;

    // check invalid sizes
    bool invalid_size = (n < 0 || lda < n || bc < 0);
    if(invalid_size)
    {
        if(BATCHED)
            EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T* const*)nullptr, lda,
                                                  stA, (rocblas_int*)nullptr, bc),
                                  rocblas_status_invalid_size);
        else
            EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T*)nullptr, lda, stA,
                                                  (rocblas_int*)nullptr, bc),
                                  rocblas_status_invalid_size);

        if(argus.timing)
            rocsolver_bench_inform(inform_invalid_size);

        return;
    }

    // memory size query is necessary
    if(argus.mem_query || !USE_ROCBLAS_REALLOC_ON_DEMAND)
    {
        CHECK_ROCBLAS_ERROR(rocblas_start_device_memory_size_query(handle));
        if(BATCHED)
            CHECK_ALLOC_QUERY(rocsolver_potri(STRIDED, handle, uplo, n, (T* const*)nullptr, lda,
                                              stA, (rocblas_int*)nullptr, bc));
        else
            CHECK_ALLOC_QUERY(rocsolver_potri(STRIDED, handle, uplo, n, (T*)nullptr, lda, stA,
                                              (rocblas_int*)nullptr, bc));

        size_t size;
        CHECK_ROCBLAS_ERROR(rocblas_stop_device_memory_size_query(handle, &size));
        if(argus.mem_query)
        {
            rocsolver_bench_inform(inform_mem_query, size);
            return;
        }

        CHECK_ROCBLAS_ERROR(rocblas_set_device_memory_size(handle, size));
    }

    if(BATCHED)
    {
        // memory allocations
        host_batch_vector<T> hA(size_A, 1, bc);
        host_batch_vector<T> hARes(size_ARes, 1, bc);
        host_strided_batch_vector<rocblas_int> hInfo(1, 1, 1, bc);
        host_strided_batch_vector<rocblas_int> hInfoRes(1, 1, 1, bc);
        device_batch_vector<T> dA(size_A, 1, bc);
        device_strided_batch_vector<rocblas_int> dInfo(1, 1, 1, bc);
        if(size_A)
            CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dInfo.memcheck());

        // check quick return
        if(n == 0 || bc == 0)
        {
            EXPECT_ROCBLAS_STATUS(
                rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc),
                rocblas_status_success);
            if(argus.timing)
                rocsolver_bench_inform(inform_quick_return);

            return;
        }

        // check computations
        if(argus.unit_check || argus.norm_check)
            potri_getError<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hARes, hInfo,
                                       hInfoRes, &max_error, argus.singular);

        // collect performance data
        if(argus.timing)
            potri_getPerfData<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo,
                                          &gpu_time_used, &cpu_time_used, hot_calls, argus.profile,
                                          argus.profile_kernels, argus.perf, argus.singular);
    }

    else
    {
        // memory allocations
        host_strided_batch_vector<T> hA(size_A, 1, stA, bc);
        host_strided_batch_vector<T> hARes(size_ARes, 1, stARes, bc);
        host_strided_batch_vector<rocblas_int> hInfo(1, 1, 1, bc);
        host_strided_batch_vector<rocblas_int> hInfoRes(1, 1, 1, bc);
        device_strided_batch_vector<T> dA(size_A, 1, stA, bc);
        device_strided_batch_vector<rocblas_int> dInfo(1, 1, 1, bc);
        if(size_A)
            CHECK_HIP_ERROR(dA.memcheck());
        CHECK_HIP_ERROR(dInfo.memcheck());

        // check quick return
        if(n == 0 || bc == 0)
        {
            EXPECT_ROCBLAS_STATUS(
                rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc),
                rocblas_status_success);
            if(argus.timing)
                rocsolver_bench_inform(inform_quick_return);

            return;
        }

        // check computations
        if(argus.unit_check || argus.norm_check)
            potri_getError<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hARes, hInfo,
                                       hInfoRes, &max_error, argus.singular);

        // collect performance data
        if(argus.timing)
            potri_getPerfData<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo,
                                          &gpu_time_used, &cpu_time_used, hot_calls, argus.profile,
                                          argus.profile_kernels, argus.perf, argus.singular);
    }

    // validate results for rocsolver-test
    // using n * machine_precision as tolerance
    if(argus.unit_check)
        ROCSOLVER_TEST_CHECK(T, max_error, n);

    // output results for rocsolver-bench
    if(argus.timing)
    {
        if(!argus.perf)
        {
            rocsolver_bench_header("Arguments:");
            if(BATCHED)
            {
                rocsolver_bench_output("uplo", "n", "lda", "batch_c");
                rocsolver_bench_output(uploC, n, lda, bc);
            }
            else if(STRIDED)
            {
                rocsolver_bench_output("uplo", "n", "lda", "strideA", "batch_c");
                rocsolver_bench_output(uploC, n, lda, stA, bc);
            }
            else
            {
                rocsolver_bench_output("uplo", "n", "lda");
                rocsolver_bench_output(uploC, n, lda);
            }
            rocsolver_bench_header("Results:");
            if(argus.norm_check)
            {
                rocsolver_bench_output("cpu_time_us", "gpu_time_us", "error");
                rocsolver_bench_output(cpu_time_used, gpu_time_used, max_error);
            }
            else
            {
                rocsolver_bench_output("cpu_time_us", "gpu_time_us");
                rocsolver_bench_output(cpu_time_used, gpu_time_used);
            }
            rocsolver_bench_endl();
        }
        else
        {
            if(argus.norm_check)
                rocsolver_bench_output(gpu_time_used, max_error);
            else
                rocsolver_bench_output(gpu_time_used);
        }
    }

    // ensure all arguments were consumed
    argus.validate_consumed();
}

#define EXTERN_TESTING_POTRI(...) extern template void testing_potri<__VA_ARGS__>(Arguments&);

INSTANTIATE(EXTERN_TESTING_POTRI, FOREACH_MATRIX_DATA_LAYOUT, FOREACH_SCALAR_TYPE, APPLY_STAMP)