1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
/* **************************************************************************
* Copyright (C) 2020-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* *************************************************************************/
#pragma once
#include "common/misc/client_util.hpp"
#include "common/misc/clientcommon.hpp"
#include "common/misc/lapack_host_reference.hpp"
#include "common/misc/norm.hpp"
#include "common/misc/rocsolver.hpp"
#include "common/misc/rocsolver_arguments.hpp"
#include "common/misc/rocsolver_test.hpp"
template <bool STRIDED, typename T, typename U>
void potri_checkBadArgs(const rocblas_handle handle,
const rocblas_fill uplo,
const rocblas_int n,
T dA,
const rocblas_int lda,
const rocblas_stride stA,
U dinfo,
const rocblas_int bc)
{
// handle
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, nullptr, uplo, n, dA, lda, stA, dinfo, bc),
rocblas_status_invalid_handle);
// values
EXPECT_ROCBLAS_STATUS(
rocsolver_potri(STRIDED, handle, rocblas_fill_full, n, dA, lda, stA, dinfo, bc),
rocblas_status_invalid_value);
// sizes (only check batch_count if applicable)
if(STRIDED)
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, dinfo, -1),
rocblas_status_invalid_size);
// pointers
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T) nullptr, lda, stA, dinfo, bc),
rocblas_status_invalid_pointer);
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, (U) nullptr, bc),
rocblas_status_invalid_pointer);
// quick return with invalid pointers
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, 0, (T) nullptr, lda, stA, dinfo, bc),
rocblas_status_success);
if(STRIDED)
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, (U) nullptr, 0),
rocblas_status_success);
// quick return with zero batch_count if applicable
if(STRIDED)
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, dA, lda, stA, dinfo, 0),
rocblas_status_success);
}
template <bool BATCHED, bool STRIDED, typename T>
void testing_potri_bad_arg()
{
// safe arguments
rocblas_local_handle handle;
rocblas_fill uplo = rocblas_fill_upper;
rocblas_int n = 1;
rocblas_int lda = 1;
rocblas_stride stA = 1;
rocblas_int bc = 1;
if(BATCHED)
{
// memory allocations
device_batch_vector<T> dA(1, 1, 1);
device_strided_batch_vector<rocblas_int> dinfo(1, 1, 1, 1);
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dinfo.memcheck());
// check bad arguments
potri_checkBadArgs<STRIDED>(handle, uplo, n, dA.data(), lda, stA, dinfo.data(), bc);
}
else
{
// memory allocations
device_strided_batch_vector<T> dA(1, 1, 1, 1);
device_strided_batch_vector<rocblas_int> dinfo(1, 1, 1, 1);
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dinfo.memcheck());
// check bad arguments
potri_checkBadArgs<STRIDED>(handle, uplo, n, dA.data(), lda, stA, dinfo.data(), bc);
}
}
template <bool CPU, bool GPU, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potri_initData(const rocblas_handle handle,
const rocblas_fill uplo,
const rocblas_int n,
Td& dA,
const rocblas_int lda,
const rocblas_stride stA,
Ud& dInfo,
const rocblas_int bc,
Th& hA,
Uh& hInfo,
const bool singular)
{
if(CPU)
{
rocblas_init<T>(hA, true);
for(rocblas_int b = 0; b < bc; ++b)
{
// scale to ensure positive definiteness
for(rocblas_int i = 0; i < n; i++)
hA[b][i + i * lda] = hA[b][i + i * lda] * sconj(hA[b][i + i * lda]) * 400;
// do the Cholesky factorization of matrix A w/ the reference LAPACK routine
cpu_potrf(uplo, n, hA[b], lda, hInfo[b]);
if(singular && (b == bc / 4 || b == bc / 2 || b == bc - 1))
{
// add some singularities
// always the same elements for debugging purposes
// the algorithm must detect the first zero elemtent in those
// matrices in the batch that are singular
rocblas_int i = n / 4 + b;
i -= (i / n) * n;
hA[b][i + i * lda] = 0;
i = n / 2 + b;
i -= (i / n) * n;
hA[b][i + i * lda] = 0;
i = n - 1 + b;
i -= (i / n) * n;
hA[b][i + i * lda] = 0;
}
}
}
if(GPU)
{
// now copy data to the GPU
CHECK_HIP_ERROR(dA.transfer_from(hA));
}
}
template <bool STRIDED, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potri_getError(const rocblas_handle handle,
const rocblas_fill uplo,
const rocblas_int n,
Td& dA,
const rocblas_int lda,
const rocblas_stride stA,
Ud& dInfo,
const rocblas_int bc,
Th& hA,
Th& hARes,
Uh& hInfo,
Uh& hInfoRes,
double* max_err,
const bool singular)
{
// input data initialization
potri_initData<true, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);
// execute computations
// GPU lapack
CHECK_ROCBLAS_ERROR(
rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc));
CHECK_HIP_ERROR(hARes.transfer_from(dA));
CHECK_HIP_ERROR(hInfoRes.transfer_from(dInfo));
// CPU lapack
for(rocblas_int b = 0; b < bc; ++b)
{
cpu_potri(uplo, n, hA[b], lda, hInfo[b]);
}
// check info for singularities
double err = 0;
*max_err = 0;
for(rocblas_int b = 0; b < bc; ++b)
{
EXPECT_EQ(hInfo[b][0], hInfoRes[b][0]) << "where b = " << b;
if(hInfo[b][0] != hInfoRes[b][0])
err++;
}
*max_err += err;
// error is ||hA - hARes|| / ||hA||
// (THIS DOES NOT ACCOUNT FOR NUMERICAL REPRODUCIBILITY ISSUES.
// IT MIGHT BE REVISITED IN THE FUTURE)
// using frobenius norm
for(rocblas_int b = 0; b < bc; ++b)
{
if(hInfoRes[b][0] == 0)
{
err = norm_error('F', n, n, lda, hA[b], hARes[b]);
*max_err = err > *max_err ? err : *max_err;
}
}
}
template <bool STRIDED, typename T, typename Td, typename Ud, typename Th, typename Uh>
void potri_getPerfData(const rocblas_handle handle,
const rocblas_fill uplo,
const rocblas_int n,
Td& dA,
const rocblas_int lda,
const rocblas_stride stA,
Ud& dInfo,
const rocblas_int bc,
Th& hA,
Uh& hInfo,
double* gpu_time_used,
double* cpu_time_used,
const rocblas_int hot_calls,
const int profile,
const bool profile_kernels,
const bool perf,
const bool singular)
{
if(!perf)
{
potri_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);
// cpu-lapack performance (only if not in perf mode)
*cpu_time_used = get_time_us_no_sync();
for(rocblas_int b = 0; b < bc; ++b)
{
cpu_potri(uplo, n, hA[b], lda, hInfo[b]);
}
*cpu_time_used = get_time_us_no_sync() - *cpu_time_used;
}
potri_initData<true, false, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);
// cold calls
for(int iter = 0; iter < 2; iter++)
{
potri_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);
CHECK_ROCBLAS_ERROR(
rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc));
}
// gpu-lapack performance
hipStream_t stream;
CHECK_ROCBLAS_ERROR(rocblas_get_stream(handle, &stream));
double start;
if(profile > 0)
{
if(profile_kernels)
rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile
| rocblas_layer_mode_ex_log_kernel);
else
rocsolver_log_set_layer_mode(rocblas_layer_mode_log_profile);
rocsolver_log_set_max_levels(profile);
}
for(rocblas_int iter = 0; iter < hot_calls; iter++)
{
potri_initData<false, true, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo, singular);
start = get_time_us_sync(stream);
rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc);
*gpu_time_used += get_time_us_sync(stream) - start;
}
*gpu_time_used /= hot_calls;
}
template <bool BATCHED, bool STRIDED, typename T>
void testing_potri(Arguments& argus)
{
// get arguments
rocblas_local_handle handle;
char uploC = argus.get<char>("uplo");
rocblas_int n = argus.get<rocblas_int>("n");
rocblas_int lda = argus.get<rocblas_int>("lda", n);
rocblas_stride stA = argus.get<rocblas_stride>("strideA", lda * n);
rocblas_fill uplo = char2rocblas_fill(uploC);
rocblas_int bc = argus.batch_count;
rocblas_int hot_calls = argus.iters;
rocblas_stride stARes = (argus.unit_check || argus.norm_check) ? stA : 0;
// check non-supported values
if(uplo != rocblas_fill_upper && uplo != rocblas_fill_lower)
{
if(BATCHED)
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T* const*)nullptr, lda,
stA, (rocblas_int*)nullptr, bc),
rocblas_status_invalid_value);
else
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T*)nullptr, lda, stA,
(rocblas_int*)nullptr, bc),
rocblas_status_invalid_value);
if(argus.timing)
rocsolver_bench_inform(inform_invalid_args);
return;
}
// determine sizes
size_t size_A = size_t(lda) * n;
double max_error = 0, gpu_time_used = 0, cpu_time_used = 0;
size_t size_ARes = (argus.unit_check || argus.norm_check) ? size_A : 0;
// check invalid sizes
bool invalid_size = (n < 0 || lda < n || bc < 0);
if(invalid_size)
{
if(BATCHED)
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T* const*)nullptr, lda,
stA, (rocblas_int*)nullptr, bc),
rocblas_status_invalid_size);
else
EXPECT_ROCBLAS_STATUS(rocsolver_potri(STRIDED, handle, uplo, n, (T*)nullptr, lda, stA,
(rocblas_int*)nullptr, bc),
rocblas_status_invalid_size);
if(argus.timing)
rocsolver_bench_inform(inform_invalid_size);
return;
}
// memory size query is necessary
if(argus.mem_query || !USE_ROCBLAS_REALLOC_ON_DEMAND)
{
CHECK_ROCBLAS_ERROR(rocblas_start_device_memory_size_query(handle));
if(BATCHED)
CHECK_ALLOC_QUERY(rocsolver_potri(STRIDED, handle, uplo, n, (T* const*)nullptr, lda,
stA, (rocblas_int*)nullptr, bc));
else
CHECK_ALLOC_QUERY(rocsolver_potri(STRIDED, handle, uplo, n, (T*)nullptr, lda, stA,
(rocblas_int*)nullptr, bc));
size_t size;
CHECK_ROCBLAS_ERROR(rocblas_stop_device_memory_size_query(handle, &size));
if(argus.mem_query)
{
rocsolver_bench_inform(inform_mem_query, size);
return;
}
CHECK_ROCBLAS_ERROR(rocblas_set_device_memory_size(handle, size));
}
if(BATCHED)
{
// memory allocations
host_batch_vector<T> hA(size_A, 1, bc);
host_batch_vector<T> hARes(size_ARes, 1, bc);
host_strided_batch_vector<rocblas_int> hInfo(1, 1, 1, bc);
host_strided_batch_vector<rocblas_int> hInfoRes(1, 1, 1, bc);
device_batch_vector<T> dA(size_A, 1, bc);
device_strided_batch_vector<rocblas_int> dInfo(1, 1, 1, bc);
if(size_A)
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dInfo.memcheck());
// check quick return
if(n == 0 || bc == 0)
{
EXPECT_ROCBLAS_STATUS(
rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc),
rocblas_status_success);
if(argus.timing)
rocsolver_bench_inform(inform_quick_return);
return;
}
// check computations
if(argus.unit_check || argus.norm_check)
potri_getError<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hARes, hInfo,
hInfoRes, &max_error, argus.singular);
// collect performance data
if(argus.timing)
potri_getPerfData<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo,
&gpu_time_used, &cpu_time_used, hot_calls, argus.profile,
argus.profile_kernels, argus.perf, argus.singular);
}
else
{
// memory allocations
host_strided_batch_vector<T> hA(size_A, 1, stA, bc);
host_strided_batch_vector<T> hARes(size_ARes, 1, stARes, bc);
host_strided_batch_vector<rocblas_int> hInfo(1, 1, 1, bc);
host_strided_batch_vector<rocblas_int> hInfoRes(1, 1, 1, bc);
device_strided_batch_vector<T> dA(size_A, 1, stA, bc);
device_strided_batch_vector<rocblas_int> dInfo(1, 1, 1, bc);
if(size_A)
CHECK_HIP_ERROR(dA.memcheck());
CHECK_HIP_ERROR(dInfo.memcheck());
// check quick return
if(n == 0 || bc == 0)
{
EXPECT_ROCBLAS_STATUS(
rocsolver_potri(STRIDED, handle, uplo, n, dA.data(), lda, stA, dInfo.data(), bc),
rocblas_status_success);
if(argus.timing)
rocsolver_bench_inform(inform_quick_return);
return;
}
// check computations
if(argus.unit_check || argus.norm_check)
potri_getError<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hARes, hInfo,
hInfoRes, &max_error, argus.singular);
// collect performance data
if(argus.timing)
potri_getPerfData<STRIDED, T>(handle, uplo, n, dA, lda, stA, dInfo, bc, hA, hInfo,
&gpu_time_used, &cpu_time_used, hot_calls, argus.profile,
argus.profile_kernels, argus.perf, argus.singular);
}
// validate results for rocsolver-test
// using n * machine_precision as tolerance
if(argus.unit_check)
ROCSOLVER_TEST_CHECK(T, max_error, n);
// output results for rocsolver-bench
if(argus.timing)
{
if(!argus.perf)
{
rocsolver_bench_header("Arguments:");
if(BATCHED)
{
rocsolver_bench_output("uplo", "n", "lda", "batch_c");
rocsolver_bench_output(uploC, n, lda, bc);
}
else if(STRIDED)
{
rocsolver_bench_output("uplo", "n", "lda", "strideA", "batch_c");
rocsolver_bench_output(uploC, n, lda, stA, bc);
}
else
{
rocsolver_bench_output("uplo", "n", "lda");
rocsolver_bench_output(uploC, n, lda);
}
rocsolver_bench_header("Results:");
if(argus.norm_check)
{
rocsolver_bench_output("cpu_time_us", "gpu_time_us", "error");
rocsolver_bench_output(cpu_time_used, gpu_time_used, max_error);
}
else
{
rocsolver_bench_output("cpu_time_us", "gpu_time_us");
rocsolver_bench_output(cpu_time_used, gpu_time_used);
}
rocsolver_bench_endl();
}
else
{
if(argus.norm_check)
rocsolver_bench_output(gpu_time_used, max_error);
else
rocsolver_bench_output(gpu_time_used);
}
}
// ensure all arguments were consumed
argus.validate_consumed();
}
#define EXTERN_TESTING_POTRI(...) extern template void testing_potri<__VA_ARGS__>(Arguments&);
INSTANTIATE(EXTERN_TESTING_POTRI, FOREACH_MATRIX_DATA_LAYOUT, FOREACH_SCALAR_TYPE, APPLY_STAMP)
|