1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
#include <algorithm> // for std::min
#include <hip/hip_runtime_api.h> // for hip functions
#include <rocsolver/rocsolver.h> // for all the rocsolver C interfaces and type declarations
#include <stdio.h> // for size_t, printf
#include <vector>
// Example: Compute the QR Factorization of a matrix on the GPU
void get_example_matrix(std::vector<double>& hA,
rocblas_int& M,
rocblas_int& N,
rocblas_int& lda) {
// a *very* small example input; not a very efficient use of the API
const double A[3][3] = { { 12, -51, 4},
{ 6, 167, -68},
{ -4, 24, -41} };
M = 3;
N = 3;
lda = 3;
// note: rocsolver matrices must be stored in column major format,
// i.e. entry (i,j) should be accessed by hA[i + j*lda]
hA.resize(size_t(lda) * N);
for (size_t i = 0; i < M; ++i) {
for (size_t j = 0; j < N; ++j) {
// copy A (2D array) into hA (1D array, column-major)
hA[i + j*lda] = A[i][j];
}
}
}
// We use rocsolver_dgeqrf to factor a real M-by-N matrix, A.
// See https://rocm.docs.amd.com/projects/rocSOLVER/en/latest/api/lapack.html#rocsolver-type-geqrf
int main() {
rocblas_int M; // rows
rocblas_int N; // cols
rocblas_int lda; // leading dimension
std::vector<double> hA; // input matrix on CPU
get_example_matrix(hA, M, N, lda);
// let's print the input matrix, just to see it
printf("A = [\n");
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% .3f ", hA[i + j*lda]);
}
printf(";\n");
}
printf("]\n");
// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);
// calculate the sizes of our arrays
size_t size_A = size_t(lda) * N; // count of elements in matrix A
size_t size_piv = size_t(std::min(M, N)); // count of Householder scalars
// allocate memory on GPU
double *dA, *dIpiv;
hipMalloc(&dA, sizeof(double)*size_A);
hipMalloc(&dIpiv, sizeof(double)*size_piv);
// copy data to GPU
hipMemcpy(dA, hA.data(), sizeof(double)*size_A, hipMemcpyHostToDevice);
// compute the QR factorization on the GPU
rocsolver_dgeqrf(handle, M, N, dA, lda, dIpiv);
// copy the results back to CPU
std::vector<double> hIpiv(size_piv); // array for householder scalars on CPU
hipMemcpy(hA.data(), dA, sizeof(double)*size_A, hipMemcpyDeviceToHost);
hipMemcpy(hIpiv.data(), dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);
// the results are now in hA and hIpiv
// we can print some of the results if we want to see them
printf("R = [\n");
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% .3f ", (i <= j) ? hA[i + j*lda] : 0);
}
printf(";\n");
}
printf("]\n");
// clean up
hipFree(dA);
hipFree(dIpiv);
rocblas_destroy_handle(handle);
}
|