1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2019-2022 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
/*! \file
* \brief flops.hpp provides floating point counts of Sparse Linear Algebra Subprograms
* of Level 1, 2 and 3.
*/
#pragma once
#ifndef FLOPS_HPP
#define FLOPS_HPP
#include <rocsparse.h>
/*
* ===========================================================================
* level 1 SPARSE
* ===========================================================================
*/
constexpr double axpyi_gflop_count(rocsparse_int nnz)
{
return (2.0 * nnz) / 1e9;
}
template <typename I>
constexpr double axpby_gflop_count(I nnz)
{
return (3.0 * nnz) / 1e9;
}
constexpr double doti_gflop_count(rocsparse_int nnz)
{
return (2.0 * nnz) / 1e9;
}
template <typename I>
constexpr double roti_gflop_count(I nnz)
{
return (6.0 * nnz) / 1e9;
}
/*
* ===========================================================================
* level 2 SPARSE
* ===========================================================================
*/
template <typename I, typename J>
constexpr double spmv_gflop_count(J M, I nnz, bool beta = false)
{
return (2.0 * nnz + (beta ? M : 0)) / 1e9;
}
template <typename I, typename J>
constexpr double csrsv_gflop_count(J M, I nnz, rocsparse_diag_type diag)
{
return (2.0 * nnz + M + (diag == rocsparse_diag_type_non_unit ? M : 0)) / 1e9;
}
template <typename I, typename J>
constexpr double spsv_gflop_count(J M, I nnz, rocsparse_diag_type diag)
{
return csrsv_gflop_count(M, nnz, diag);
}
template <typename I>
constexpr double gemvi_gflop_count(I M, I nnz)
{
return (M + 2.0 * nnz * M) / 1e9;
}
/*
* ===========================================================================
* level 3 SPARSE
* ===========================================================================
*/
constexpr double bsrmm_gflop_count(rocsparse_int N,
rocsparse_int nnzb,
rocsparse_int block_dim,
rocsparse_int nnz_C,
bool beta = false)
{
return (2.0 * nnzb * block_dim * block_dim * N + (beta ? nnz_C : 0)) / 1e9;
}
constexpr double gebsrmm_gflop_count(rocsparse_int N,
rocsparse_int nnzb,
rocsparse_int row_block_dim,
rocsparse_int col_block_dim,
rocsparse_int nnz_C,
bool beta = false)
{
return (2.0 * nnzb * row_block_dim * col_block_dim * N + (beta ? nnz_C : 0)) / 1e9;
}
template <typename I, typename J>
constexpr double csrmm_gflop_count(J N, I nnz_A, I nnz_C, bool beta = false)
{
// Multiplication by 2 comes from 1 addition and 1 multiplication in product. Multiplication
// by alpha and beta not counted.
return (2.0 * nnz_A * N + (beta ? nnz_C : 0)) / 1e9;
}
template <typename I, typename J>
constexpr double spmm_gflop_count(J N, I nnz_A, I nnz_C, bool beta = false)
{
return csrmm_gflop_count(N, nnz_A, nnz_C, beta);
}
template <rocsparse_format FORMAT>
struct rocsparse_gflop_count
{
template <typename T, typename I, typename J>
static constexpr double sddmm(J M, J N, I nnz, J K, bool beta = false);
};
template <>
struct rocsparse_gflop_count<rocsparse_format_coo>
{
template <typename I, typename J>
static constexpr double sddmm(J M, J N, I nnz, J K, bool beta = false)
{
size_t innz = (size_t)nnz;
return (innz * ((size_t(K) + (size_t(K) - 1)) + 1 + ((beta) ? 2 : 0))) / 1e9;
}
};
template <>
struct rocsparse_gflop_count<rocsparse_format_csr>
{
template <typename I, typename J>
static constexpr double sddmm(J M, J N, I nnz, J K, bool beta = false)
{
return rocsparse_gflop_count<rocsparse_format_coo>::sddmm(M, N, nnz, K, beta);
}
};
template <>
struct rocsparse_gflop_count<rocsparse_format_csc>
{
template <typename I, typename J>
static constexpr double sddmm(J M, J N, I nnz, J K, bool beta = false)
{
return rocsparse_gflop_count<rocsparse_format_coo>::sddmm(M, N, nnz, K, beta);
}
};
template <>
struct rocsparse_gflop_count<rocsparse_format_coo_aos>
{
template <typename I, typename J>
static constexpr double sddmm(J M, J N, I nnz, J K, bool beta = false)
{
return rocsparse_gflop_count<rocsparse_format_coo>::sddmm(M, N, nnz, K, beta);
}
};
template <>
struct rocsparse_gflop_count<rocsparse_format_ell>
{
template <typename I, typename J>
static constexpr double sddmm(J M, J N, I nnz, J K, bool beta = false)
{
return rocsparse_gflop_count<rocsparse_format_coo>::sddmm(M, N, nnz, K, beta);
}
};
/*
* ===========================================================================
* extra SPARSE
* ===========================================================================
*/
template <typename T>
constexpr double csrgeam_gflop_count(
rocsparse_int nnz_A, rocsparse_int nnz_B, rocsparse_int nnz_C, const T* alpha, const T* beta)
{
// Flop counter
double flops = 0.0;
if(alpha && beta)
{
// Count alpha * A
flops += static_cast<double>(nnz_A);
// Count beta * B
flops += static_cast<double>(nnz_B);
// Count A + B
flops += static_cast<double>(nnz_C);
}
else if(!alpha)
{
// Count beta * B
flops += static_cast<double>(nnz_B);
}
else
{
// Count alpha * A
flops += static_cast<double>(nnz_A);
}
return flops / 1e9;
}
template <typename T, typename I = rocsparse_int, typename J = rocsparse_int>
constexpr double csrgemm_gflop_count(J M,
const T* alpha,
const I* csr_row_ptr_A,
const J* csr_col_ind_A,
const I* csr_row_ptr_B,
const T* beta,
const I* csr_row_ptr_D,
rocsparse_index_base baseA)
{
// Flop counter
double flops = 0.0;
// Loop over rows of A
for(J i = 0; i < M; ++i)
{
if(alpha)
{
I row_begin_A = csr_row_ptr_A[i] - baseA;
I row_end_A = csr_row_ptr_A[i + 1] - baseA;
// Loop over columns of A
for(I j = row_begin_A; j < row_end_A; ++j)
{
// Current column of A
J col_A = csr_col_ind_A[j] - baseA;
// Count flops generated by alpha * A * B
flops += 2.0 * (csr_row_ptr_B[col_A + 1] - csr_row_ptr_B[col_A]) + 1.0;
}
}
if(beta)
{
// Count flops generated by beta * D
flops += (csr_row_ptr_D[i + 1] - csr_row_ptr_D[i]);
}
}
return flops / 1e9;
}
#endif // FLOPS_HPP
|