1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2020 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#include <hip/hip_runtime_api.h>
#include <iostream>
#include <rocsparse.h>
#include <vector>
#define HIP_CHECK(stat) \
{ \
if(stat != hipSuccess) \
{ \
std::cerr << "Error: hip error in line " << __LINE__ << std::endl; \
return -1; \
} \
}
#define ROCSPARSE_CHECK(stat) \
{ \
if(stat != rocsparse_status_success) \
{ \
std::cerr << "Error: rocsparse error in line " << __LINE__ << std::endl; \
return -1; \
} \
}
int main(int argc, char* argv[])
{
// Query device
int ndev;
HIP_CHECK(hipGetDeviceCount(&ndev));
if(ndev < 1)
{
std::cerr << "No HIP device found" << std::endl;
return -1;
}
// Query device properties
hipDeviceProp_t prop;
HIP_CHECK(hipGetDeviceProperties(&prop, 0));
std::cout << "Device: " << prop.name << std::endl;
// rocSPARSE handle
rocsparse_handle handle;
ROCSPARSE_CHECK(rocsparse_create_handle(&handle));
// Print rocSPARSE version and revision
int ver;
char rev[64];
ROCSPARSE_CHECK(rocsparse_get_version(handle, &ver));
ROCSPARSE_CHECK(rocsparse_get_git_rev(handle, rev));
std::cout << "rocSPARSE version: " << ver / 100000 << "." << ver / 100 % 1000 << "."
<< ver % 100 << "-" << rev << std::endl;
// Input data
// Matrix A
// ( 1.0 2.0 0.0 3.0 )
// ( 0.0 4.0 5.0 0.0 )
// ( 6.0 0.0 0.0 7.0 )
// Number of rows and columns
rocsparse_int m = 3;
rocsparse_int n = 4;
// Number of non-zero entries
rocsparse_int nnz_A = 7;
// CSR row pointers
rocsparse_int hcsr_row_ptr_A[4] = {0, 3, 5, 7};
// CSR column indices
rocsparse_int hcsr_col_ind_A[7] = {0, 1, 3, 1, 2, 0, 3};
// CSR values
double hcsr_val_A[7] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
// Matrix B
// ( 0.0 1.0 2.0 3.0 )
// ( 4.0 5.0 0.0 6.0 )
// ( 0.0 7.0 8.0 0.0 )
// Number of non-zero entries
rocsparse_int nnz_B = 8;
// CSR row pointers
rocsparse_int hcsr_row_ptr_B[4] = {0, 3, 6, 8};
// CSR column indices
rocsparse_int hcsr_col_ind_B[8] = {1, 2, 3, 0, 1, 3, 1, 2};
// CSR values
double hcsr_val_B[8] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0};
// Scalar alpha and beta
double alpha = 3.7;
double beta = 1.3;
// Matrix descriptor
rocsparse_mat_descr descr_A;
rocsparse_mat_descr descr_B;
rocsparse_mat_descr descr_C;
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_A));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_B));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_C));
// Offload data to device
rocsparse_int* dcsr_row_ptr_A;
rocsparse_int* dcsr_col_ind_A;
double* dcsr_val_A;
rocsparse_int* dcsr_row_ptr_B;
rocsparse_int* dcsr_col_ind_B;
double* dcsr_val_B;
rocsparse_int* dcsr_row_ptr_C;
rocsparse_int* dcsr_col_ind_C;
double* dcsr_val_C;
HIP_CHECK(hipMalloc((void**)&dcsr_row_ptr_A, sizeof(rocsparse_int) * (m + 1)));
HIP_CHECK(hipMalloc((void**)&dcsr_col_ind_A, sizeof(rocsparse_int) * nnz_A));
HIP_CHECK(hipMalloc((void**)&dcsr_val_A, sizeof(double) * nnz_A));
HIP_CHECK(hipMalloc((void**)&dcsr_row_ptr_B, sizeof(rocsparse_int) * (m + 1)));
HIP_CHECK(hipMalloc((void**)&dcsr_col_ind_B, sizeof(rocsparse_int) * nnz_B));
HIP_CHECK(hipMalloc((void**)&dcsr_val_B, sizeof(double) * nnz_B));
HIP_CHECK(hipMalloc((void**)&dcsr_row_ptr_C, sizeof(rocsparse_int) * (m + 1)));
HIP_CHECK(hipMemcpy(
dcsr_row_ptr_A, hcsr_row_ptr_A, sizeof(rocsparse_int) * (m + 1), hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(
dcsr_col_ind_A, hcsr_col_ind_A, sizeof(rocsparse_int) * nnz_A, hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(dcsr_val_A, hcsr_val_A, sizeof(double) * nnz_A, hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(
dcsr_row_ptr_B, hcsr_row_ptr_B, sizeof(rocsparse_int) * (m + 1), hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(
dcsr_col_ind_B, hcsr_col_ind_B, sizeof(rocsparse_int) * nnz_B, hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(dcsr_val_B, hcsr_val_B, sizeof(double) * nnz_B, hipMemcpyHostToDevice));
// Obtain number of total non-zero entries in C and row pointers of C
rocsparse_int nnz_C;
ROCSPARSE_CHECK(rocsparse_csrgeam_nnz(handle,
m,
n,
descr_A,
nnz_A,
dcsr_row_ptr_A,
dcsr_col_ind_A,
descr_B,
nnz_B,
dcsr_row_ptr_B,
dcsr_col_ind_B,
descr_C,
dcsr_row_ptr_C,
&nnz_C));
std::cout << "Matrix C contains " << nnz_C << " non-zero elements" << std::endl;
// Compute column indices and values of C
HIP_CHECK(hipMalloc((void**)&dcsr_col_ind_C, sizeof(rocsparse_int) * nnz_C));
HIP_CHECK(hipMalloc((void**)&dcsr_val_C, sizeof(double) * nnz_C));
ROCSPARSE_CHECK(rocsparse_dcsrgeam(handle,
m,
n,
&alpha,
descr_A,
nnz_A,
dcsr_val_A,
dcsr_row_ptr_A,
dcsr_col_ind_A,
&beta,
descr_B,
nnz_B,
dcsr_val_B,
dcsr_row_ptr_B,
dcsr_col_ind_B,
descr_C,
dcsr_val_C,
dcsr_row_ptr_C,
dcsr_col_ind_C));
// Print result
std::vector<rocsparse_int> hcsr_row_ptr_C(m + 1);
std::vector<rocsparse_int> hcsr_col_ind_C(nnz_C);
std::vector<double> hcsr_val_C(nnz_C);
HIP_CHECK(hipMemcpy(hcsr_row_ptr_C.data(),
dcsr_row_ptr_C,
sizeof(rocsparse_int) * (m + 1),
hipMemcpyDeviceToHost));
HIP_CHECK(hipMemcpy(hcsr_col_ind_C.data(),
dcsr_col_ind_C,
sizeof(rocsparse_int) * nnz_C,
hipMemcpyDeviceToHost));
HIP_CHECK(
hipMemcpy(hcsr_val_C.data(), dcsr_val_C, sizeof(double) * nnz_C, hipMemcpyDeviceToHost));
std::cout << "C row pointer:";
for(int i = 0; i < m + 1; ++i)
{
std::cout << " " << hcsr_row_ptr_C[i];
}
std::cout << std::endl << "C column indices:";
for(int i = 0; i < nnz_C; ++i)
{
std::cout << " " << hcsr_col_ind_C[i];
}
std::cout << std::endl << "C values:";
for(int i = 0; i < nnz_C; ++i)
{
std::cout << " " << hcsr_val_C[i];
}
std::cout << std::endl;
// Clear rocSPARSE
ROCSPARSE_CHECK(rocsparse_destroy_mat_descr(descr_A));
ROCSPARSE_CHECK(rocsparse_destroy_mat_descr(descr_B));
ROCSPARSE_CHECK(rocsparse_destroy_mat_descr(descr_C));
ROCSPARSE_CHECK(rocsparse_destroy_handle(handle));
// Clear device memory
HIP_CHECK(hipFree(dcsr_row_ptr_A));
HIP_CHECK(hipFree(dcsr_col_ind_A));
HIP_CHECK(hipFree(dcsr_val_A));
HIP_CHECK(hipFree(dcsr_row_ptr_B));
HIP_CHECK(hipFree(dcsr_col_ind_B));
HIP_CHECK(hipFree(dcsr_val_B));
HIP_CHECK(hipFree(dcsr_row_ptr_C));
HIP_CHECK(hipFree(dcsr_col_ind_C));
HIP_CHECK(hipFree(dcsr_val_C));
return 0;
}
|