1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/* ************************************************************************
* Copyright (C) 2019-2022 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
/*! \file
* \brief rocsparse-complex-types.h defines complex data types used in rocsparse
*/
#ifndef _ROCSPARSE_COMPLEX_TYPES_H_
#define _ROCSPARSE_COMPLEX_TYPES_H_
#if __cplusplus < 201402L || (!defined(__HIPCC__))
/* If this is a C compiler, C++ compiler below C++14, or a host-only compiler, only
include minimal definitions of rocsparse_float_complex and rocsparse_double_complex */
typedef struct
{
float x, y;
} rocsparse_float_complex;
typedef struct
{
double x, y;
} rocsparse_double_complex;
#else /* __cplusplus < 201402L || (!defined(__HIPCC__)) */
// If this is a full internal build, add full support of complex arithmetic and classes
// including __host__ and __device__ and such we need to use <hip/hip_runtime.h>.
#include <cmath>
#include <complex>
#include <hip/hip_runtime.h>
#include <ostream>
#include <sstream>
template <typename T>
class rocsparse_complex_num
{
public:
__device__ __host__ rocsparse_complex_num(void) = default;
__device__ __host__ rocsparse_complex_num(const rocsparse_complex_num&) = default;
__device__ __host__ rocsparse_complex_num(rocsparse_complex_num&&) = default;
__device__ __host__ rocsparse_complex_num& operator=(const rocsparse_complex_num& rhs)
= default;
__device__ __host__ rocsparse_complex_num& operator=(rocsparse_complex_num&& rhs) = default;
__device__ __host__ ~rocsparse_complex_num(void) = default;
// Constructors
__device__ __host__ rocsparse_complex_num(T r, T i)
: x(r)
, y(i)
{
}
__device__ __host__ rocsparse_complex_num(T r)
: x(r)
, y(static_cast<T>(0))
{
}
// Conversion from std::complex<T>
__device__ __host__ rocsparse_complex_num(const std::complex<T>& z)
: x(reinterpret_cast<T (&)[2]>(z)[0])
, y(reinterpret_cast<T (&)[2]>(z)[1])
{
}
// Conversion to std::complex<T>
__device__ __host__ operator std::complex<T>() const
{
return {x, y};
}
// Accessors
friend __device__ __host__ T std::real(const rocsparse_complex_num& z);
friend __device__ __host__ T std::imag(const rocsparse_complex_num& z);
// Stream output
friend auto& operator<<(std::ostream& out, const rocsparse_complex_num& z)
{
std::stringstream ss;
ss << '(' << z.x << ',' << z.y << ')';
return out << ss.str();
}
friend __device__ __host__ rocsparse_complex_num std::fma(rocsparse_complex_num p,
rocsparse_complex_num q,
rocsparse_complex_num r);
friend __device__ __host__ rocsparse_complex_num std::conj(const rocsparse_complex_num& z);
friend __device__ __host__ T std::abs(const rocsparse_complex_num<T>& z);
// Unary operations
__device__ __host__ rocsparse_complex_num operator-() const
{
return {-x, -y};
}
// In-place complex-complex operations
__device__ __host__ auto& operator*=(const rocsparse_complex_num& rhs)
{
T real = fma(x, rhs.x, -y * rhs.y);
T imag = fma(y, rhs.x, x * rhs.y);
return *this = {real, imag};
}
__device__ __host__ auto& operator+=(const rocsparse_complex_num& rhs)
{
return *this = {x + rhs.x, y + rhs.y};
}
__device__ __host__ auto& operator-=(const rocsparse_complex_num& rhs)
{
return *this = {x - rhs.x, y - rhs.y};
}
__device__ __host__ auto& operator/=(const rocsparse_complex_num& rhs)
{
T sqabs = static_cast<T>(1) / fma(rhs.x, rhs.x, rhs.y * rhs.y);
T real = fma(x, rhs.x, y * rhs.y) * sqabs;
T imag = fma(y, rhs.x, -x * rhs.y) * sqabs;
return *this = {real, imag};
}
// Out-of-place complex-complex operations
__device__ __host__ auto operator+(const rocsparse_complex_num& rhs) const
{
auto lhs = *this;
return lhs += rhs;
}
__device__ __host__ auto operator-(const rocsparse_complex_num& rhs) const
{
auto lhs = *this;
return lhs -= rhs;
}
__device__ __host__ auto operator*(const rocsparse_complex_num& rhs) const
{
auto lhs = *this;
return lhs *= rhs;
}
__device__ __host__ auto operator/(const rocsparse_complex_num& rhs) const
{
auto lhs = *this;
return lhs /= rhs;
}
__device__ __host__ bool operator==(const rocsparse_complex_num& rhs) const
{
return x == rhs.x && y == rhs.y;
}
__device__ __host__ bool operator!=(const rocsparse_complex_num& rhs) const
{
return !(*this == rhs);
}
private:
// Internal real absolute function, to be sure we're on both device and host
static __forceinline__ __device__ __host__ T abs(T x)
{
return x < 0 ? -x : x;
}
static __forceinline__ __device__ __host__ float sqrt(float x)
{
return ::sqrtf(x);
}
static __forceinline__ __device__ __host__ double sqrt(double x)
{
return ::sqrt(x);
}
static __forceinline__ __device__ __host__ float fma(float p, float q, float r)
{
return ::fma(p, q, r);
}
static __forceinline__ __device__ __host__ double fma(double p, double q, double r)
{
return ::fma(p, q, r);
}
T x;
T y;
};
// Inject standard functions into namespace std
namespace std
{
template <typename T>
__device__ __host__ inline T real(const rocsparse_complex_num<T>& z)
{
return z.x;
}
template <typename T>
__device__ __host__ inline T imag(const rocsparse_complex_num<T>& z)
{
return z.y;
}
template <typename T>
__device__ __host__ inline rocsparse_complex_num<T>
fma(rocsparse_complex_num<T> p, rocsparse_complex_num<T> q, rocsparse_complex_num<T> r)
{
T real = rocsparse_complex_num<T>::fma(
-p.y, q.y, rocsparse_complex_num<T>::fma(p.x, q.x, r.x));
T imag
= rocsparse_complex_num<T>::fma(p.x, q.y, rocsparse_complex_num<T>::fma(p.y, q.x, r.y));
return {real, imag};
}
template <typename T>
__device__ __host__ inline rocsparse_complex_num<T> conj(const rocsparse_complex_num<T>& z)
{
return {z.x, -z.y};
}
template <typename T>
__device__ __host__ inline T abs(const rocsparse_complex_num<T>& z)
{
T real = rocsparse_complex_num<T>::abs(z.x);
T imag = rocsparse_complex_num<T>::abs(z.y);
return real > imag ? (imag /= real, real * rocsparse_complex_num<T>::sqrt(imag * imag + 1))
: imag ? (real /= imag, imag * rocsparse_complex_num<T>::sqrt(real * real + 1))
: 0;
}
}
// Test for C compatibility
template <typename T>
class rocsparse_complex_num_check
{
static_assert(
std::is_standard_layout<rocsparse_complex_num<T>>{},
"rocsparse_complex_num<T> is not a standard layout type, and thus is incompatible with C.");
static_assert(
std::is_trivial<rocsparse_complex_num<T>>{},
"rocsparse_complex_num<T> is not a trivial type, and thus is incompatible with C.");
static_assert(
sizeof(rocsparse_complex_num<T>) == 2 * sizeof(T),
"rocsparse_complex_num<T> is not the correct size, and thus is incompatible with C.");
};
template class rocsparse_complex_num_check<float>;
template class rocsparse_complex_num_check<double>;
// rocSPARSE complex data types
using rocsparse_float_complex = rocsparse_complex_num<float>;
using rocsparse_double_complex = rocsparse_complex_num<double>;
#endif /* __cplusplus < 201402L || (!defined(__HIPCC__)) */
#endif /* _ROCSPARSE_COMPLEX_TYPES_H_ */
|