1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2019-2024 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#pragma once
#ifndef ROCSPARSE_RANDOM_HPP
#define ROCSPARSE_RANDOM_HPP
#include "rocsparse_math.hpp"
#include <random>
#include <type_traits>
/* ==================================================================================== */
// Random number generator
using rocsparse_rng_t = std::mt19937;
void rocsparse_rng_set(rocsparse_rng_t a);
void rocsparse_seed_set(rocsparse_rng_t a);
void rocsparse_rng_nan_set(rocsparse_rng_t a);
rocsparse_rng_t& rocsparse_rng_get();
rocsparse_rng_t& rocsparse_seed_get();
rocsparse_rng_t& rocsparse_rng_nan_get();
// extern rocsparse_rng_t rocsparse_rng, rocsparse_seed, rocsparse_rng_nan;
extern int rocsparse_rand_uniform_float_idx;
extern int rocsparse_rand_uniform_double_idx;
extern int rocsparse_rand_normal_double_idx;
// Reset the seed (mainly to ensure repeatability of failures in a given suite)
void rocsparse_seedrand();
int rocsparse_uniform_int(int a, int b);
float rocsparse_uniform_float(float a, float b);
double rocsparse_uniform_double(double a, double b);
double rocsparse_normal_double();
/* ==================================================================================== */
/*! \brief Random number generator which generates NaN values */
class rocsparse_nan_rng
{
// Generate random NaN values
template <typename T, typename UINT_T, int SIG, int EXP>
static T random_nan_data()
{
static_assert(sizeof(UINT_T) == sizeof(T), "Type sizes do not match");
union u_t
{
u_t() {}
UINT_T u;
T fp;
} x;
do
x.u = std::uniform_int_distribution<UINT_T>{}(rocsparse_rng_nan_get());
while(!(x.u & (((UINT_T)1 << SIG) - 1))); // Reject Inf (mantissa == 0)
x.u |= (((UINT_T)1 << EXP) - 1) << SIG; // Exponent = all 1's
return x.fp; // NaN with random bits
}
public:
// Random integer
template <typename T, typename std::enable_if<std::is_integral<T>{}, int>::type = 0>
explicit operator T()
{
return std::uniform_int_distribution<T>{}(rocsparse_rng_nan_get());
}
// Random int8_t
explicit operator int8_t()
{
return (int8_t)std::uniform_int_distribution<int>(std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max())(
rocsparse_rng_nan_get());
}
// Random char
explicit operator char()
{
return (char)std::uniform_int_distribution<int>(std::numeric_limits<char>::min(),
std::numeric_limits<char>::max())(
rocsparse_rng_nan_get());
}
// Random NaN double
explicit operator double()
{
return random_nan_data<double, uint64_t, 52, 11>();
}
// Random NaN float
explicit operator float()
{
return random_nan_data<float, uint32_t, 23, 8>();
}
explicit operator rocsparse_float_complex()
{
return {float(*this), float(*this)};
}
explicit operator rocsparse_double_complex()
{
return {double(*this), double(*this)};
}
};
/* ==================================================================================== */
/* generate random number :*/
/*! \brief generate a random number in range [a,b] using integer numbers*/
template <typename T>
inline T random_generator_exact(int a = 1, int b = 10)
{
return std::uniform_int_distribution<int>(a, b)(rocsparse_rng_get());
}
template <>
inline rocsparse_float_complex random_generator_exact<rocsparse_float_complex>(int a, int b)
{
return rocsparse_float_complex(random_generator_exact<float>(a, b),
random_generator_exact<float>(a, b));
}
template <>
inline rocsparse_double_complex random_generator_exact<rocsparse_double_complex>(int a, int b)
{
return rocsparse_double_complex(random_generator_exact<double>(a, b),
random_generator_exact<double>(a, b));
}
/*! \brief generate a random number in range [a,b]*/
template <typename T, typename std::enable_if_t<std::is_integral<T>::value, bool> = true>
inline T random_generator(T a = static_cast<T>(1), T b = static_cast<T>(10))
{
return random_generator_exact<T>(a, b);
}
template <typename T, typename std::enable_if_t<!std::is_integral<T>::value, bool> = true>
inline T random_generator(T a = static_cast<T>(0), T b = static_cast<T>(1))
{
return std::uniform_real_distribution<T>(a, b)(rocsparse_rng_get());
}
template <>
inline rocsparse_float_complex random_generator<rocsparse_float_complex>(rocsparse_float_complex a,
rocsparse_float_complex b)
{
float theta = random_generator<float>(0.0f, 2.0f * acos(-1.0f));
float r = random_generator<float>(std::abs(a), std::abs(b));
return rocsparse_float_complex(r * cos(theta), r * sin(theta));
}
template <>
inline rocsparse_double_complex
random_generator<rocsparse_double_complex>(rocsparse_double_complex a,
rocsparse_double_complex b)
{
double theta = random_generator<double>(0.0, 2.0 * acos(-1.0));
double r = random_generator<double>(std::abs(a), std::abs(b));
return rocsparse_double_complex(r * cos(theta), r * sin(theta));
}
/*! \brief generate a random number in range [a,b] from a predetermined finite cache using integer numbers*/
template <typename T>
inline T random_cached_generator_exact(int a = 1, int b = 10)
{
return rocsparse_uniform_int(a, b);
}
template <>
inline float random_cached_generator_exact(int a, int b)
{
return static_cast<float>(rocsparse_uniform_int(a, b));
}
template <>
inline double random_cached_generator_exact(int a, int b)
{
return static_cast<double>(rocsparse_uniform_int(a, b));
}
template <>
inline rocsparse_float_complex random_cached_generator_exact<rocsparse_float_complex>(int a, int b)
{
return rocsparse_float_complex(random_cached_generator_exact<float>(a, b),
random_cached_generator_exact<float>(a, b));
}
template <>
inline rocsparse_double_complex random_cached_generator_exact<rocsparse_double_complex>(int a,
int b)
{
return rocsparse_double_complex(random_cached_generator_exact<double>(a, b),
random_cached_generator_exact<double>(a, b));
}
/*! \brief generate a random number in range [a,b] from a predetermined finite cache*/
template <typename T, typename std::enable_if_t<std::is_integral<T>::value, bool> = true>
inline T random_cached_generator(T a = static_cast<T>(1), T b = static_cast<T>(10))
{
return random_cached_generator_exact<T>(a, b);
}
template <typename T, typename std::enable_if_t<!std::is_integral<T>::value, bool> = true>
inline T random_cached_generator(T a = static_cast<T>(0), T b = static_cast<T>(1))
{
return static_cast<T>(rocsparse_uniform_float(a, b));
}
template <>
inline double random_cached_generator(double a, double b)
{
return rocsparse_uniform_double(a, b);
}
template <>
inline rocsparse_float_complex
random_cached_generator<rocsparse_float_complex>(rocsparse_float_complex a,
rocsparse_float_complex b)
{
float theta = random_cached_generator<float>(0.0f, 2.0f * acos(-1.0f));
float r = random_cached_generator<float>(std::abs(a), std::abs(b));
return rocsparse_float_complex(r * cos(theta), r * sin(theta));
}
template <>
inline rocsparse_double_complex
random_cached_generator<rocsparse_double_complex>(rocsparse_double_complex a,
rocsparse_double_complex b)
{
double theta = random_cached_generator<double>(0.0, 2.0 * acos(-1.0));
double r = random_cached_generator<double>(std::abs(a), std::abs(b));
return rocsparse_double_complex(r * cos(theta), r * sin(theta));
}
/*! \brief generate a random normally distributed number around 0 with stddev 1 from a predetermined finite cache */
template <typename T>
inline T random_cached_generator_normal()
{
return static_cast<T>(rocsparse_normal_double());
}
#endif // ROCSPARSE_RANDOM_HPP
|