1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2019-2023 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#include "testing.hpp"
template <typename T>
void testing_cscsort_bad_arg(const Arguments& arg)
{
static const size_t safe_size = 100;
// Create rocsparse handle
rocsparse_local_handle local_handle;
// Create matrix descriptor
rocsparse_local_mat_descr local_descr;
rocsparse_handle handle = local_handle;
rocsparse_int m = safe_size;
rocsparse_int n = safe_size;
rocsparse_int nnz = safe_size;
const rocsparse_mat_descr descr = local_descr;
rocsparse_int* csc_col_ptr = (rocsparse_int*)0x4;
rocsparse_int* csc_row_ind = (rocsparse_int*)0x4;
size_t* buffer_size = (size_t*)0x4;
void* temp_buffer = (void*)0x4;
int nargs_to_exclude = 1;
const int args_to_exclude[1] = {7};
rocsparse_int* perm = nullptr;
#define PARAMS_BUFFER_SIZE handle, m, n, nnz, csc_col_ptr, csc_row_ind, buffer_size
#define PARAMS handle, m, n, nnz, descr, csc_col_ptr, csc_row_ind, perm, temp_buffer
bad_arg_analysis(rocsparse_cscsort_buffer_size, PARAMS_BUFFER_SIZE);
select_bad_arg_analysis(rocsparse_cscsort, nargs_to_exclude, args_to_exclude, PARAMS);
#undef PARAMS_BUFFER_SIZE
#undef PARAMS
}
template <typename T>
void testing_cscsort(const Arguments& arg)
{
rocsparse_matrix_factory<T> matrix_factory(arg);
rocsparse_int M = arg.M;
rocsparse_int N = arg.N;
bool permute = arg.algo;
rocsparse_index_base base = arg.baseA;
// Create rocsparse handle
rocsparse_local_handle handle(arg);
// Create matrix descriptor
rocsparse_local_mat_descr descr;
// Set matrix index base
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descr, base));
// Allocate host memory for CSR matrix
host_vector<rocsparse_int> hcsc_row_ind;
host_vector<rocsparse_int> hcsc_col_ptr;
host_vector<T> hcsc_val;
host_vector<rocsparse_int> hcsc_row_ind_gold;
host_vector<T> hcsc_val_gold;
// Sample matrix
rocsparse_int nnz;
matrix_factory.init_csr(hcsc_col_ptr, hcsc_row_ind, hcsc_val, N, M, nnz, base);
// Unsort CSR matrix
host_vector<rocsparse_int> hperm(nnz);
hcsc_row_ind_gold = hcsc_row_ind;
hcsc_val_gold = hcsc_val;
for(rocsparse_int i = 0; i < N; ++i)
{
rocsparse_int col_begin = hcsc_col_ptr[i] - base;
rocsparse_int col_end = hcsc_col_ptr[i + 1] - base;
rocsparse_int col_nnz = col_end - col_begin;
for(rocsparse_int j = col_begin; j < col_end; ++j)
{
rocsparse_int rng = col_begin + rand() % col_nnz;
std::swap(hcsc_row_ind[j], hcsc_row_ind[rng]);
std::swap(hcsc_val[j], hcsc_val[rng]);
}
}
// Allocate device memory
device_vector<rocsparse_int> dcsc_row_ind(nnz);
device_vector<rocsparse_int> dcsc_col_ptr(N + 1);
device_vector<T> dcsc_val(nnz);
device_vector<rocsparse_int> dperm(nnz);
// Copy data from CPU to device
CHECK_HIP_ERROR(
hipMemcpy(dcsc_row_ind, hcsc_row_ind, sizeof(rocsparse_int) * nnz, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(
dcsc_col_ptr, hcsc_col_ptr, sizeof(rocsparse_int) * (N + 1), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dcsc_val, hcsc_val, sizeof(T) * nnz, hipMemcpyHostToDevice));
// Obtain buffer size
size_t buffer_size;
CHECK_ROCSPARSE_ERROR(
rocsparse_cscsort_buffer_size(handle, M, N, nnz, dcsc_col_ptr, dcsc_row_ind, &buffer_size));
// Allocate buffer
void* dbuffer;
CHECK_HIP_ERROR(rocsparse_hipMalloc(&dbuffer, buffer_size));
if(arg.unit_check)
{
// Create permutation vector
CHECK_ROCSPARSE_ERROR(rocsparse_create_identity_permutation(handle, nnz, dperm));
// Sort CSR matrix
CHECK_ROCSPARSE_ERROR(testing::rocsparse_cscsort(handle,
M,
N,
nnz,
descr,
dcsc_col_ptr,
dcsc_row_ind,
permute ? dperm : nullptr,
dbuffer));
// Copy output to host
CHECK_HIP_ERROR(hipMemcpy(
hcsc_row_ind, dcsc_row_ind, sizeof(rocsparse_int) * nnz, hipMemcpyDeviceToHost));
hcsc_row_ind_gold.unit_check(hcsc_row_ind);
// Permute, copy and check values, if requested
if(permute)
{
device_vector<T> dcsc_val_sorted(nnz);
CHECK_ROCSPARSE_ERROR(rocsparse_gthr<T>(
handle, nnz, dcsc_val, dcsc_val_sorted, dperm, rocsparse_index_base_zero));
CHECK_HIP_ERROR(
hipMemcpy(hcsc_val, dcsc_val_sorted, sizeof(T) * nnz, hipMemcpyDeviceToHost));
hcsc_val_gold.unit_check(hcsc_val);
}
}
if(arg.timing)
{
int number_cold_calls = 2;
int number_hot_calls = arg.iters;
// Warm up
for(int iter = 0; iter < number_cold_calls; ++iter)
{
CHECK_ROCSPARSE_ERROR(rocsparse_cscsort(handle,
M,
N,
nnz,
descr,
dcsc_col_ptr,
dcsc_row_ind,
permute ? dperm : nullptr,
dbuffer));
}
double gpu_time_used = get_time_us();
// Performance run
for(int iter = 0; iter < number_hot_calls; ++iter)
{
CHECK_ROCSPARSE_ERROR(rocsparse_cscsort(handle,
M,
N,
nnz,
descr,
dcsc_col_ptr,
dcsc_row_ind,
permute ? dperm : nullptr,
dbuffer));
}
gpu_time_used = (get_time_us() - gpu_time_used) / number_hot_calls;
double gbyte_count = cscsort_gbyte_count<T>(N, nnz, permute);
double gpu_gbyte = get_gpu_gbyte(gpu_time_used, gbyte_count);
display_timing_info(display_key_t::M,
M,
display_key_t::N,
N,
display_key_t::nnz,
nnz,
display_key_t::permute,
(permute ? "yes" : "no"),
display_key_t::bandwidth,
gpu_gbyte,
display_key_t::time_ms,
get_gpu_time_msec(gpu_time_used));
}
// Clear buffer
CHECK_HIP_ERROR(rocsparse_hipFree(dbuffer));
}
#define INSTANTIATE(TYPE) \
template void testing_cscsort_bad_arg<TYPE>(const Arguments& arg); \
template void testing_cscsort<TYPE>(const Arguments& arg)
INSTANTIATE(float);
INSTANTIATE(double);
INSTANTIATE(rocsparse_float_complex);
INSTANTIATE(rocsparse_double_complex);
void testing_cscsort_extra(const Arguments& arg) {}
|