File: testing_csricsv.cpp

package info (click to toggle)
rocsparse 6.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,428 kB
  • sloc: cpp: 234,069; f90: 9,307; sh: 2,262; python: 1,939; makefile: 1,585; ansic: 440; xml: 26
file content (517 lines) | stat: -rw-r--r-- 23,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*! \file */
/* ************************************************************************
 * Copyright (C) 2019-2024 Advanced Micro Devices, Inc. All rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * ************************************************************************ */

#include "testing.hpp"

template <typename T>
void testing_csricsv_bad_arg(const Arguments& arg)
{
}

template <typename T>
void testing_csricsv(const Arguments& arg)
{
    rocsparse_int             M         = arg.M;
    rocsparse_int             N         = arg.N;
    rocsparse_analysis_policy apol      = arg.apol;
    rocsparse_solve_policy    spol      = arg.spol;
    rocsparse_index_base      base      = arg.baseA;
    static constexpr bool     full_rank = true;
    static constexpr bool     to_int    = true;

    rocsparse_matrix_factory<T> matrix_factory(arg, to_int, full_rank);

    // Create rocsparse handle
    rocsparse_local_handle handle;

    // Create matrix descriptor
    rocsparse_local_mat_descr descrM;

    // Create matrix info
    rocsparse_local_mat_info info;

    // Set matrix index base
    CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descrM, base));

    // Allocate host memory for matrix
    host_vector<rocsparse_int> hcsr_row_ptr;
    host_vector<rocsparse_int> hcsr_col_ind;
    host_vector<T>             hcsr_val_gold;
    host_vector<rocsparse_int> h_struct_pivot_gold(1);
    host_vector<rocsparse_int> h_struct_pivot_1(1);
    host_vector<rocsparse_int> h_struct_pivot_2(1);
    host_vector<rocsparse_int> h_numeric_pivot_gold(1);
    host_vector<rocsparse_int> h_numeric_pivot_L_gold(1);
    host_vector<rocsparse_int> h_numeric_pivot_LT_gold(1);
    host_vector<rocsparse_int> h_numeric_pivot_1(1);
    host_vector<rocsparse_int> h_numeric_pivot_2(1);
    host_vector<rocsparse_int> h_numeric_pivot_L_1(1);
    host_vector<rocsparse_int> h_numeric_pivot_L_2(1);
    host_vector<rocsparse_int> h_numeric_pivot_LT_1(1);
    host_vector<rocsparse_int> h_numeric_pivot_LT_2(1);

    host_vector<rocsparse_int> h_singular_pivot_gold(1);
    host_vector<rocsparse_int> h_singular_pivot_1(1);

    // Sample matrix
    rocsparse_int nnz;
    matrix_factory.init_csr(hcsr_row_ptr, hcsr_col_ind, hcsr_val_gold, M, N, nnz, base);

    // Allocate device memory
    device_vector<rocsparse_int> dcsr_row_ptr(M + 1);
    device_vector<rocsparse_int> dcsr_col_ind(nnz);
    device_vector<T>             dcsr_val(nnz);
    device_vector<rocsparse_int> d_struct_pivot_2(1);
    device_vector<rocsparse_int> d_numeric_pivot_2(1);
    device_vector<rocsparse_int> d_numeric_pivot_L_2(1);
    device_vector<rocsparse_int> d_numeric_pivot_LT_2(1);

    if(!dcsr_row_ptr || !dcsr_col_ind || !dcsr_val || !d_struct_pivot_2 || !d_numeric_pivot_2
       || !d_numeric_pivot_L_2 || !d_numeric_pivot_LT_2)
    {
        CHECK_HIP_ERROR(hipErrorOutOfMemory);
        return;
    }

    // Copy data from CPU to device
    CHECK_HIP_ERROR(hipMemcpy(
        dcsr_row_ptr, hcsr_row_ptr, sizeof(rocsparse_int) * (M + 1), hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(
        hipMemcpy(dcsr_col_ind, hcsr_col_ind, sizeof(rocsparse_int) * nnz, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dcsr_val, hcsr_val_gold, sizeof(T) * nnz, hipMemcpyHostToDevice));

    // Obtain csric0 buffer size
    size_t buffer_size;
    CHECK_ROCSPARSE_ERROR(rocsparse_csric0_buffer_size<T>(
        handle, M, nnz, descrM, dcsr_val, dcsr_row_ptr, dcsr_col_ind, info, &buffer_size));

    // Allocate buffer
    void* dbuffer;
    CHECK_HIP_ERROR(rocsparse_hipMalloc(&dbuffer, buffer_size));

    if(!dbuffer)
    {
        CHECK_HIP_ERROR(hipErrorOutOfMemory);
        return;
    }

    // csric0 analysis
    CHECK_ROCSPARSE_ERROR(rocsparse_csric0_analysis<T>(
        handle, M, nnz, descrM, dcsr_val, dcsr_row_ptr, dcsr_col_ind, info, apol, spol, dbuffer));

    // Compute reference incomplete LU factorization on host
    {

        double tol = 0;
        CHECK_ROCSPARSE_ERROR(rocsparse_csric0_get_tolerance(handle, info, &tol));
        host_csric0<T>(M,
                       hcsr_row_ptr,
                       hcsr_col_ind,
                       hcsr_val_gold,
                       base,
                       h_struct_pivot_gold,
                       h_numeric_pivot_gold,
                       h_singular_pivot_gold,
                       tol);
    }

    // Check for structural zero pivot using host pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
    EXPECT_ROCSPARSE_STATUS(rocsparse_csric0_zero_pivot(handle, info, h_struct_pivot_1),
                            (h_struct_pivot_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                           : rocsparse_status_success);

    // Check for structural zero pivot using device pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
    EXPECT_ROCSPARSE_STATUS(rocsparse_csric0_zero_pivot(handle, info, d_struct_pivot_2),
                            (h_struct_pivot_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                           : rocsparse_status_success);

    // Copy output to CPU
    CHECK_HIP_ERROR(hipMemcpy(
        h_struct_pivot_2, d_struct_pivot_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));

    // Check pivot results
    h_struct_pivot_gold.unit_check(h_struct_pivot_1);
    h_struct_pivot_gold.unit_check(h_struct_pivot_2);

    // If structural pivot has been found, we are done
    if(h_struct_pivot_gold[0] != -1)
    {
        return;
    }

    // csric0
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
    CHECK_ROCSPARSE_ERROR(rocsparse_csric0<T>(
        handle, M, nnz, descrM, dcsr_val, dcsr_row_ptr, dcsr_col_ind, info, spol, dbuffer));

    CHECK_HIP_ERROR(rocsparse_hipFree(dbuffer));

    // Check for numerical zero pivot using host pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
    EXPECT_ROCSPARSE_STATUS(rocsparse_csric0_zero_pivot(handle, info, h_numeric_pivot_1),
                            (h_numeric_pivot_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                            : rocsparse_status_success);

    // Check for numerical singular pivot using host pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));

    {
        auto st = rocsparse_csric0_singular_pivot(handle, info, h_singular_pivot_1);
        EXPECT_ROCSPARSE_STATUS(st, rocsparse_status_success);
    }

    // Check for structural zero pivot using device pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
    EXPECT_ROCSPARSE_STATUS(rocsparse_csric0_zero_pivot(handle, info, d_numeric_pivot_2),
                            (h_numeric_pivot_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                            : rocsparse_status_success);

    // Copy output to CPU
    host_vector<T> hcsr_val(nnz);
    CHECK_HIP_ERROR(hipMemcpy(
        h_numeric_pivot_2, d_numeric_pivot_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hcsr_val, dcsr_val, sizeof(T) * nnz, hipMemcpyDeviceToHost));

    // Check pivot results
    h_numeric_pivot_gold.unit_check(h_numeric_pivot_1);
    h_numeric_pivot_gold.unit_check(h_numeric_pivot_2);

    h_singular_pivot_gold.unit_check(h_singular_pivot_1);

    // If numerical pivot has been found, we are done
    if(h_numeric_pivot_gold[0] != -1)
    {
        return;
    }

    // Check IC factorization
    hcsr_val_gold.near_check(hcsr_val);

    // Create matrix descriptors for csrsv
    rocsparse_local_mat_descr descrL;

    CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descrL, base));
    CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_fill_mode(descrL, rocsparse_fill_mode_lower));
    CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_diag_type(descrL, rocsparse_diag_type_non_unit));

    // Initialize structures for csrsv
    T h_alpha = static_cast<T>(1);

    host_vector<T> hx(N, static_cast<T>(1));
    host_vector<T> hy_1(M);
    host_vector<T> hy_2(M);
    host_vector<T> hy_gold(M);
    host_vector<T> hz_1(M);
    host_vector<T> hz_2(M);
    host_vector<T> hz_gold(M);

    // Allocate device memory
    device_vector<T> dx(N);
    device_vector<T> dy_1(M);
    device_vector<T> dy_2(M);
    device_vector<T> dz_1(M);
    device_vector<T> dz_2(M);
    device_vector<T> d_alpha(1);

    if(!dx || !dy_1 || !dy_2 || !dz_1 || !dz_2 || !d_alpha)
    {
        CHECK_HIP_ERROR(hipErrorOutOfMemory);
        return;
    }

    // Copy data from CPU to device
    CHECK_HIP_ERROR(hipMemcpy(dx, hx, sizeof(T) * N, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(d_alpha, &h_alpha, sizeof(T), hipMemcpyHostToDevice));

    // Compute reference solution on host
    host_csrsv<rocsparse_int, rocsparse_int, T>(rocsparse_operation_none,
                                                M,
                                                nnz,
                                                h_alpha,
                                                hcsr_row_ptr,
                                                hcsr_col_ind,
                                                hcsr_val_gold,
                                                hx,
                                                (int64_t)1,
                                                hz_gold,
                                                rocsparse_diag_type_non_unit,
                                                rocsparse_fill_mode_lower,
                                                base,
                                                h_struct_pivot_gold,
                                                h_numeric_pivot_L_gold);
    host_csrsv<rocsparse_int, rocsparse_int, T>(rocsparse_operation_transpose,
                                                M,
                                                nnz,
                                                h_alpha,
                                                hcsr_row_ptr,
                                                hcsr_col_ind,
                                                hcsr_val_gold,
                                                hz_gold,
                                                (int64_t)1,
                                                hy_gold,
                                                rocsparse_diag_type_non_unit,
                                                rocsparse_fill_mode_lower,
                                                base,
                                                h_struct_pivot_gold,
                                                h_numeric_pivot_LT_gold);

    // Obtain csrsv buffer sizes
    size_t buffer_size_l;
    size_t buffer_size_lt;

    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_buffer_size<T>(handle,
                                                         rocsparse_operation_none,
                                                         M,
                                                         nnz,
                                                         descrL,
                                                         dcsr_val,
                                                         dcsr_row_ptr,
                                                         dcsr_col_ind,
                                                         info,
                                                         &buffer_size_l));
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_buffer_size<T>(handle,
                                                         rocsparse_operation_transpose,
                                                         M,
                                                         nnz,
                                                         descrL,
                                                         dcsr_val,
                                                         dcsr_row_ptr,
                                                         dcsr_col_ind,
                                                         info,
                                                         &buffer_size_lt));

    // Determine buffer size maximum
    buffer_size = std::max(buffer_size_l, buffer_size_lt);

    CHECK_HIP_ERROR(rocsparse_hipMalloc(&dbuffer, buffer_size));

    if(!dbuffer)
    {
        CHECK_HIP_ERROR(hipErrorOutOfMemory);
        return;
    }

    // csrsv analysis
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_analysis<T>(handle,
                                                      rocsparse_operation_none,
                                                      M,
                                                      nnz,
                                                      descrL,
                                                      dcsr_val,
                                                      dcsr_row_ptr,
                                                      dcsr_col_ind,
                                                      info,
                                                      apol,
                                                      spol,
                                                      dbuffer));
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_analysis<T>(handle,
                                                      rocsparse_operation_transpose,
                                                      M,
                                                      nnz,
                                                      descrL,
                                                      dcsr_val,
                                                      dcsr_row_ptr,
                                                      dcsr_col_ind,
                                                      info,
                                                      apol,
                                                      spol,
                                                      dbuffer));

    // Check transposed part for structural zero pivot using host pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
    EXPECT_ROCSPARSE_STATUS(rocsparse_csrsv_zero_pivot(handle, descrL, info, h_struct_pivot_1),
                            (h_struct_pivot_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                           : rocsparse_status_success);

    // Check transposed part for structural zero pivot using device pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
    EXPECT_ROCSPARSE_STATUS(rocsparse_csrsv_zero_pivot(handle, descrL, info, d_struct_pivot_2),
                            (h_struct_pivot_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                           : rocsparse_status_success);

    // Copy output to CPU
    CHECK_HIP_ERROR(hipMemcpy(
        h_struct_pivot_2, d_struct_pivot_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));

    // Check pivots
    h_struct_pivot_gold.unit_check(h_struct_pivot_1);
    h_struct_pivot_gold.unit_check(h_struct_pivot_2);

    // If structural pivot has been found, we are done
    if(h_struct_pivot_gold[0] != -1)
    {
        return;
    }

    // Solve Lz = x (= 1)

    // Host pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_solve<T>(handle,
                                                   rocsparse_operation_none,
                                                   M,
                                                   nnz,
                                                   &h_alpha,
                                                   descrL,
                                                   dcsr_val,
                                                   dcsr_row_ptr,
                                                   dcsr_col_ind,
                                                   info,
                                                   dx,
                                                   dz_1,
                                                   spol,
                                                   dbuffer));

    // Check for numerical zero pivot using host pointer mode
    EXPECT_ROCSPARSE_STATUS(rocsparse_csrsv_zero_pivot(handle, descrL, info, h_numeric_pivot_L_1),
                            (h_numeric_pivot_L_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                              : rocsparse_status_success);

    // Device pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_solve<T>(handle,
                                                   rocsparse_operation_none,
                                                   M,
                                                   nnz,
                                                   d_alpha,
                                                   descrL,
                                                   dcsr_val,
                                                   dcsr_row_ptr,
                                                   dcsr_col_ind,
                                                   info,
                                                   dx,
                                                   dz_2,
                                                   spol,
                                                   dbuffer));

    // Check for numerical zero pivot using device pointer mode
    EXPECT_ROCSPARSE_STATUS(rocsparse_csrsv_zero_pivot(handle, descrL, info, d_numeric_pivot_L_2),
                            (h_numeric_pivot_L_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                              : rocsparse_status_success);

    // Copy output to CPU
    CHECK_HIP_ERROR(hipMemcpy(
        h_numeric_pivot_L_2, d_numeric_pivot_L_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hz_1, dz_1, sizeof(T) * M, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hz_2, dz_2, sizeof(T) * M, hipMemcpyDeviceToHost));

    // Check pivot results
    h_numeric_pivot_L_gold.unit_check(h_numeric_pivot_L_1);
    h_numeric_pivot_L_gold.unit_check(h_numeric_pivot_L_2);

    // If numerical pivot has been found, we are done
    if(h_numeric_pivot_L_gold[0] != -1)
    {
        return;
    }

    // Check z
    hz_gold.near_check(hz_1);
    hz_gold.near_check(hz_2);

    // Solve L'y = z

    // Host pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_solve<T>(handle,
                                                   rocsparse_operation_transpose,
                                                   M,
                                                   nnz,
                                                   &h_alpha,
                                                   descrL,
                                                   dcsr_val,
                                                   dcsr_row_ptr,
                                                   dcsr_col_ind,
                                                   info,
                                                   dz_1,
                                                   dy_1,
                                                   spol,
                                                   dbuffer));

    // Check for numerical zero pivot using host pointer mode
    EXPECT_ROCSPARSE_STATUS(rocsparse_csrsv_zero_pivot(handle, descrL, info, h_numeric_pivot_LT_1),
                            (h_numeric_pivot_LT_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                               : rocsparse_status_success);

    // Device pointer mode
    CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_solve<T>(handle,
                                                   rocsparse_operation_transpose,
                                                   M,
                                                   nnz,
                                                   d_alpha,
                                                   descrL,
                                                   dcsr_val,
                                                   dcsr_row_ptr,
                                                   dcsr_col_ind,
                                                   info,
                                                   dz_2,
                                                   dy_2,
                                                   spol,
                                                   dbuffer));

    // Check for numerical zero pivot using device pointer mode
    EXPECT_ROCSPARSE_STATUS(rocsparse_csrsv_zero_pivot(handle, descrL, info, d_numeric_pivot_LT_2),
                            (h_numeric_pivot_LT_gold[0] != -1) ? rocsparse_status_zero_pivot
                                                               : rocsparse_status_success);

    // Copy output to CPU
    CHECK_HIP_ERROR(hipMemcpy(
        h_numeric_pivot_LT_2, d_numeric_pivot_LT_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hy_1, dy_1, sizeof(T) * M, hipMemcpyDeviceToHost));
    CHECK_HIP_ERROR(hipMemcpy(hy_2, dy_2, sizeof(T) * M, hipMemcpyDeviceToHost));

    // Check pivot and y
    h_numeric_pivot_LT_gold.unit_check(h_numeric_pivot_LT_1);
    h_numeric_pivot_LT_gold.unit_check(h_numeric_pivot_LT_2);

    // If numerical pivot has been found, we are done
    if(h_numeric_pivot_LT_gold[0] != -1)
    {
        return;
    }

    // Check y
    hy_gold.near_check(hy_1);
    hy_gold.near_check(hy_2);

    // Clear csrsv meta data
    CHECK_ROCSPARSE_ERROR(rocsparse_csrsv_clear(handle, descrL, info));
    CHECK_ROCSPARSE_ERROR(rocsparse_csric0_clear(handle, info));

    // Free buffer
    CHECK_HIP_ERROR(rocsparse_hipFree(dbuffer));
}

#define INSTANTIATE(TYPE)                                      \
    template void testing_csricsv<TYPE>(const Arguments& arg); \
    template void testing_csricsv_bad_arg<TYPE>(const Arguments& arg)

INSTANTIATE(float);
INSTANTIATE(double);
INSTANTIATE(rocsparse_float_complex);
INSTANTIATE(rocsparse_double_complex);
void testing_csricsv_extra(const Arguments& arg) {}