1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2019-2024 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#include "rocsparse_enum.hpp"
#include "testing.hpp"
#include "testing_csrilu0.hpp"
template <typename T>
static void test_csrilu0_matrix(rocsparse_local_handle& handle,
rocsparse_local_mat_descr& descr,
rocsparse_local_mat_info& info,
rocsparse_int M,
host_vector<rocsparse_int>& hcsr_row_ptr,
host_vector<rocsparse_int>& hcsr_col_ind,
host_vector<T>& hcsr_val_gold,
const Arguments& arg,
bool need_display)
{
const rocsparse_analysis_policy apol = arg.apol;
const rocsparse_solve_policy spol = arg.spol;
const rocsparse_index_base base = arg.baseA;
const int boost = arg.numericboost;
const T h_boost_val = arg.get_boostval<T>();
const T h_boost_tol = static_cast<T>(arg.boosttol);
// Sample matrix
const rocsparse_int nnz = hcsr_row_ptr[M] - hcsr_row_ptr[0];
// Allocate host memory for vectors
host_vector<T> hcsr_val_1(nnz);
host_vector<T> hcsr_val_2(nnz);
host_vector<rocsparse_int> h_analysis_pivot_1(1);
host_vector<rocsparse_int> h_analysis_pivot_2(1);
host_vector<rocsparse_int> h_analysis_pivot_gold(1);
host_vector<rocsparse_int> h_solve_pivot_1(1);
host_vector<rocsparse_int> h_solve_pivot_2(1);
host_vector<rocsparse_int> h_solve_pivot_gold(1);
host_vector<rocsparse_int> h_singular_pivot_1(1);
host_vector<rocsparse_int> h_singular_pivot_2(1);
host_vector<rocsparse_int> h_singular_pivot_gold(1);
// Allocate device memory
device_vector<rocsparse_int> dcsr_row_ptr(M + 1);
device_vector<rocsparse_int> dcsr_col_ind(nnz);
device_vector<T> dcsr_val_1(nnz);
device_vector<T> dcsr_val_2(nnz);
device_vector<rocsparse_int> d_analysis_pivot_2(1);
device_vector<rocsparse_int> d_solve_pivot_2(1);
device_vector<T> d_boost_tol(1);
device_vector<T> d_boost_val(1);
device_vector<rocsparse_int> d_singular_pivot_2(1);
// Copy data from CPU to device
CHECK_HIP_ERROR(hipMemcpy(
dcsr_row_ptr, hcsr_row_ptr, sizeof(rocsparse_int) * (M + 1), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(
hipMemcpy(dcsr_col_ind, hcsr_col_ind, sizeof(rocsparse_int) * nnz, hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(dcsr_val_1, hcsr_val_gold, sizeof(T) * nnz, hipMemcpyHostToDevice));
// Obtain required buffer size
size_t buffer_size = 0;
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_buffer_size<T>(
handle, M, nnz, descr, dcsr_val_1, dcsr_row_ptr, dcsr_col_ind, info, &buffer_size));
void* dbuffer = nullptr;
CHECK_HIP_ERROR(rocsparse_hipMalloc(&dbuffer, buffer_size));
if(arg.unit_check)
{
CHECK_HIP_ERROR(hipMemcpy(d_boost_tol, &h_boost_tol, sizeof(T), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_boost_val, &h_boost_val, sizeof(T), hipMemcpyHostToDevice));
// Copy data from CPU to device
CHECK_HIP_ERROR(
hipMemcpy(dcsr_val_2, hcsr_val_gold, sizeof(T) * nnz, hipMemcpyHostToDevice));
// Perform analysis step
// Pointer mode host
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_analysis<T>(handle,
M,
nnz,
descr,
dcsr_val_1,
dcsr_row_ptr,
dcsr_col_ind,
info,
apol,
spol,
dbuffer));
{
auto st = rocsparse_csrilu0_zero_pivot(handle, info, h_analysis_pivot_1);
EXPECT_ROCSPARSE_STATUS(st,
(h_analysis_pivot_1[0] != -1) ? rocsparse_status_zero_pivot
: rocsparse_status_success);
}
// Sync to force updated pivots
CHECK_HIP_ERROR(hipDeviceSynchronize());
// Pointer mode device
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_analysis<T>(handle,
M,
nnz,
descr,
dcsr_val_2,
dcsr_row_ptr,
dcsr_col_ind,
info,
apol,
spol,
dbuffer));
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_zero_pivot(handle, info, d_analysis_pivot_2),
(h_analysis_pivot_1[0] != -1) ? rocsparse_status_zero_pivot
: rocsparse_status_success);
// Sync to force updated pivots
CHECK_HIP_ERROR(hipDeviceSynchronize());
// Perform solve step
// Pointer mode host
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_numeric_boost<T>(
handle, info, boost, get_boost_tol(&h_boost_tol), &h_boost_val));
CHECK_ROCSPARSE_ERROR(testing::rocsparse_csrilu0<T>(
handle, M, nnz, descr, dcsr_val_1, dcsr_row_ptr, dcsr_col_ind, info, spol, dbuffer));
{
auto st = rocsparse_csrilu0_zero_pivot(handle, info, h_solve_pivot_1);
EXPECT_ROCSPARSE_STATUS(st,
(h_solve_pivot_1[0] != -1) ? rocsparse_status_zero_pivot
: rocsparse_status_success);
}
{
auto st = rocsparse_csrilu0_singular_pivot(handle, info, h_singular_pivot_1);
EXPECT_ROCSPARSE_STATUS(st, rocsparse_status_success);
}
// Sync to force updated pivots
CHECK_HIP_ERROR(hipDeviceSynchronize());
// Pointer mode device
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_numeric_boost<T>(
handle, info, boost, get_boost_tol(d_boost_tol), d_boost_val));
CHECK_ROCSPARSE_ERROR(testing::rocsparse_csrilu0<T>(
handle, M, nnz, descr, dcsr_val_2, dcsr_row_ptr, dcsr_col_ind, info, spol, dbuffer));
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_zero_pivot(handle, info, d_solve_pivot_2),
(h_solve_pivot_1[0] != -1) ? rocsparse_status_zero_pivot
: rocsparse_status_success);
{
auto st = rocsparse_csrilu0_singular_pivot(handle, info, d_singular_pivot_2);
EXPECT_ROCSPARSE_STATUS(st, rocsparse_status_success);
}
// Sync to force updated pivots
CHECK_HIP_ERROR(hipDeviceSynchronize());
// Copy output to host
CHECK_HIP_ERROR(hipMemcpy(hcsr_val_1, dcsr_val_1, sizeof(T) * nnz, hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(hcsr_val_2, dcsr_val_2, sizeof(T) * nnz, hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(
h_analysis_pivot_2, d_analysis_pivot_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(
h_solve_pivot_2, d_solve_pivot_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));
CHECK_HIP_ERROR(hipMemcpy(
h_singular_pivot_2, d_singular_pivot_2, sizeof(rocsparse_int), hipMemcpyDeviceToHost));
// CPU csrilu0
{
double tol = 0;
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_get_tolerance(handle, info, &tol));
host_csrilu0<T>(M,
hcsr_row_ptr,
hcsr_col_ind,
hcsr_val_gold,
base,
h_analysis_pivot_gold,
h_solve_pivot_gold,
h_singular_pivot_gold,
tol,
boost,
*get_boost_tol(&h_boost_tol),
h_boost_val);
}
// Check pivots
h_analysis_pivot_gold.unit_check(h_analysis_pivot_1);
h_analysis_pivot_gold.unit_check(h_analysis_pivot_2);
h_solve_pivot_gold.unit_check(h_solve_pivot_1);
h_solve_pivot_gold.unit_check(h_solve_pivot_2);
h_singular_pivot_gold.unit_check(h_singular_pivot_1);
h_singular_pivot_gold.unit_check(h_singular_pivot_2);
// Check solution vector if no pivot has been found
if(h_analysis_pivot_gold[0] == -1 && h_solve_pivot_gold[0] == -1)
{
if(ROCSPARSE_REPRODUCIBILITY)
{
rocsparse_reproducibility::save(
"P pointer mode host", hcsr_val_1, "P pointer mode device", hcsr_val_2);
}
hcsr_val_gold.near_check(hcsr_val_1);
hcsr_val_gold.near_check(hcsr_val_2);
}
else
{
if(ROCSPARSE_REPRODUCIBILITY)
{
rocsparse_reproducibility::save("Pivot analysis pointer mode host",
h_analysis_pivot_1,
"Pivot analysis pointer mode device",
h_analysis_pivot_2,
"Pivot solve pointer mode host",
h_solve_pivot_1,
"Pivot solve pointer mode device",
h_solve_pivot_2);
}
}
}
if(arg.timing)
{
int number_cold_calls = 2;
int number_hot_calls = arg.iters;
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
// Warm up
for(int iter = 0; iter < number_cold_calls; ++iter)
{
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_analysis<T>(handle,
M,
nnz,
descr,
dcsr_val_1,
dcsr_row_ptr,
dcsr_col_ind,
info,
apol,
spol,
dbuffer));
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0<T>(handle,
M,
nnz,
descr,
dcsr_val_1,
dcsr_row_ptr,
dcsr_col_ind,
info,
spol,
dbuffer));
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_clear(handle, info));
}
double gpu_analysis_time_used = get_time_us();
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_analysis<T>(handle,
M,
nnz,
descr,
dcsr_val_1,
dcsr_row_ptr,
dcsr_col_ind,
info,
apol,
spol,
dbuffer));
gpu_analysis_time_used = get_time_us() - gpu_analysis_time_used;
double gpu_solve_time_used = get_time_us();
// Performance run
for(int iter = 0; iter < number_hot_calls; ++iter)
{
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0<T>(handle,
M,
nnz,
descr,
dcsr_val_1,
dcsr_row_ptr,
dcsr_col_ind,
info,
spol,
dbuffer));
}
gpu_solve_time_used = (get_time_us() - gpu_solve_time_used) / number_hot_calls;
double gbyte_count = csrilu0_gbyte_count<T>(M, nnz);
double gpu_gbyte = get_gpu_gbyte(gpu_solve_time_used, gbyte_count);
rocsparse_int pivot = -1;
if(h_analysis_pivot_1[0] == -1)
{
pivot = h_solve_pivot_1[0];
}
else if(h_solve_pivot_1[0] == -1)
{
pivot = h_analysis_pivot_1[0];
}
else
{
pivot = std::min(h_analysis_pivot_1[0], h_solve_pivot_1[0]);
}
if(need_display)
{
display_timing_info("M",
M,
"nnz",
nnz,
"pivot",
pivot,
"analysis policy",
rocsparse_analysis2string(apol),
"solve policy",
rocsparse_solve2string(spol),
s_timing_info_bandwidth,
gpu_gbyte,
"analysis msec",
get_gpu_time_msec(gpu_analysis_time_used),
s_timing_info_time,
get_gpu_time_msec(gpu_solve_time_used));
}
}
// Clear csrilu0 meta data
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_clear(handle, info));
// Free buffer
CHECK_HIP_ERROR(rocsparse_hipFree(dbuffer));
}
template <typename T>
void testing_csrilu0_bad_arg(const Arguments& arg)
{
static const size_t safe_size = 100;
// Create rocsparse handle
rocsparse_local_handle local_handle;
// Create matrix descriptor
rocsparse_local_mat_descr local_descr;
// Create matrix info
rocsparse_local_mat_info local_info;
rocsparse_handle handle = local_handle;
rocsparse_int m = safe_size;
rocsparse_int nnz = safe_size;
const rocsparse_mat_descr descr = local_descr;
T* csr_val = (T*)0x4;
const rocsparse_int* csr_row_ptr = (const rocsparse_int*)0x4;
const rocsparse_int* csr_col_ind = (const rocsparse_int*)0x4;
rocsparse_mat_info info = local_info;
rocsparse_analysis_policy analysis = rocsparse_analysis_policy_force;
rocsparse_solve_policy solve = rocsparse_solve_policy_auto;
rocsparse_solve_policy policy = rocsparse_solve_policy_auto;
size_t* buffer_size = (size_t*)0x4;
void* temp_buffer = (void*)0x4;
const T* boost_tol = (const T*)0x4;
const T* boost_val = (const T*)0x4;
#define PARAMS_BUFFER_SIZE \
handle, m, nnz, descr, csr_val, csr_row_ptr, csr_col_ind, info, buffer_size
#define PARAMS_ANALYSIS \
handle, m, nnz, descr, csr_val, csr_row_ptr, csr_col_ind, info, analysis, solve, temp_buffer
#define PARAMS handle, m, nnz, descr, csr_val, csr_row_ptr, csr_col_ind, info, policy, temp_buffer
bad_arg_analysis(rocsparse_csrilu0_buffer_size<T>, PARAMS_BUFFER_SIZE);
bad_arg_analysis(rocsparse_csrilu0_analysis<T>, PARAMS_ANALYSIS);
bad_arg_analysis(rocsparse_csrilu0<T>, PARAMS);
for(auto val : rocsparse_matrix_type_t::values)
{
if(val != rocsparse_matrix_type_general)
{
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_type(descr, val));
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_buffer_size<T>(PARAMS_BUFFER_SIZE),
rocsparse_status_not_implemented);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_analysis<T>(PARAMS_ANALYSIS),
rocsparse_status_not_implemented);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0<T>(PARAMS), rocsparse_status_not_implemented);
}
}
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_type(descr, rocsparse_matrix_type_general));
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_storage_mode(descr, rocsparse_storage_mode_unsorted));
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_buffer_size<T>(PARAMS_BUFFER_SIZE),
rocsparse_status_requires_sorted_storage);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_analysis<T>(PARAMS_ANALYSIS),
rocsparse_status_requires_sorted_storage);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0<T>(PARAMS), rocsparse_status_requires_sorted_storage);
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_storage_mode(descr, rocsparse_storage_mode_sorted));
#undef PARAMS_BUFFER_SIZE
#undef PARAMS_ANALYSIS
#undef PARAMS
// Test rocsparse_csrilu0_numeric_boost()
EXPECT_ROCSPARSE_STATUS(
rocsparse_csrilu0_numeric_boost<T>(nullptr, info, 1, get_boost_tol(boost_tol), boost_val),
rocsparse_status_invalid_handle);
EXPECT_ROCSPARSE_STATUS(
rocsparse_csrilu0_numeric_boost<T>(handle, nullptr, 1, get_boost_tol(boost_tol), boost_val),
rocsparse_status_invalid_pointer);
EXPECT_ROCSPARSE_STATUS(
rocsparse_csrilu0_numeric_boost<T>(handle, info, 1, get_boost_tol((T*)nullptr), boost_val),
rocsparse_status_invalid_pointer);
EXPECT_ROCSPARSE_STATUS(
rocsparse_csrilu0_numeric_boost<T>(handle, info, 1, get_boost_tol(boost_tol), nullptr),
rocsparse_status_invalid_pointer);
// Test rocsparse_csrilu0_zero_pivot()
rocsparse_int position;
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_zero_pivot(nullptr, info, &position),
rocsparse_status_invalid_handle);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_zero_pivot(handle, nullptr, &position),
rocsparse_status_invalid_pointer);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_zero_pivot(handle, info, nullptr),
rocsparse_status_invalid_pointer);
// Test rocsparse_csrilu0_singular_pivot()
{
rocsparse_int position = -1;
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_singular_pivot(nullptr, info, &position),
rocsparse_status_invalid_handle);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_singular_pivot(handle, nullptr, &position),
rocsparse_status_invalid_pointer);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_singular_pivot(handle, info, nullptr),
rocsparse_status_invalid_pointer);
}
// Test rocsparse_csrilu0_clear()
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_clear(nullptr, info),
rocsparse_status_invalid_handle);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_clear(handle, nullptr),
rocsparse_status_invalid_pointer);
// Additional tests for invalid zero matrices
EXPECT_ROCSPARSE_STATUS(
rocsparse_csrilu0_buffer_size<T>(
handle, safe_size, safe_size, descr, nullptr, csr_row_ptr, nullptr, info, buffer_size),
rocsparse_status_invalid_pointer);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_analysis<T>(handle,
safe_size,
safe_size,
descr,
nullptr,
csr_row_ptr,
nullptr,
info,
rocsparse_analysis_policy_reuse,
rocsparse_solve_policy_auto,
temp_buffer),
rocsparse_status_invalid_pointer);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0<T>(handle,
safe_size,
safe_size,
descr,
nullptr,
csr_row_ptr,
nullptr,
info,
rocsparse_solve_policy_auto,
temp_buffer),
rocsparse_status_invalid_pointer);
}
template <typename T>
void testing_csrilu0(const Arguments& arg)
{
rocsparse_int M = arg.M;
rocsparse_int N = arg.N;
rocsparse_analysis_policy apol = arg.apol;
rocsparse_solve_policy spol = arg.spol;
rocsparse_index_base base = arg.baseA;
const bool to_int = arg.timing ? false : true;
static constexpr bool full_rank = true;
rocsparse_matrix_factory<T> matrix_factory(arg, to_int, full_rank);
// Create rocsparse handle
rocsparse_local_handle handle(arg);
// Create matrix descriptor
rocsparse_local_mat_descr descr;
// Create matrix info
rocsparse_local_mat_info info;
// Set matrix index base
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descr, base));
// Argument sanity check before allocating invalid memory
if(M <= 0)
{
static const size_t safe_size = 100;
size_t buffer_size;
rocsparse_int pivot;
// Allocate memory on device
device_vector<rocsparse_int> dcsr_row_ptr(safe_size);
device_vector<rocsparse_int> dcsr_col_ind(safe_size);
device_vector<T> dcsr_val(safe_size);
device_vector<T> dbuffer(safe_size);
if(!dcsr_row_ptr || !dcsr_col_ind || !dcsr_val || !dbuffer)
{
CHECK_HIP_ERROR(hipErrorOutOfMemory);
return;
}
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_buffer_size<T>(handle,
M,
safe_size,
descr,
dcsr_val,
dcsr_row_ptr,
dcsr_col_ind,
info,
&buffer_size),
(M < 0) ? rocsparse_status_invalid_size : rocsparse_status_success);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_analysis<T>(handle,
M,
safe_size,
descr,
dcsr_val,
dcsr_row_ptr,
dcsr_col_ind,
info,
apol,
spol,
dbuffer),
(M < 0) ? rocsparse_status_invalid_size : rocsparse_status_success);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0<T>(handle,
M,
safe_size,
descr,
dcsr_val,
dcsr_row_ptr,
dcsr_col_ind,
info,
spol,
dbuffer),
(M < 0) ? rocsparse_status_invalid_size : rocsparse_status_success);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_zero_pivot(handle, info, &pivot),
rocsparse_status_success);
EXPECT_ROCSPARSE_STATUS(rocsparse_csrilu0_clear(handle, info), rocsparse_status_success);
return;
}
// Allocate host memory for matrix
host_vector<rocsparse_int> hcsr_row_ptr;
host_vector<rocsparse_int> hcsr_col_ind;
host_vector<T> hcsr_val_gold;
// Sample matrix
rocsparse_int nnz;
matrix_factory.init_csr(hcsr_row_ptr, hcsr_col_ind, hcsr_val_gold, M, N, nnz, base);
{
const bool need_display = true;
test_csrilu0_matrix(
handle, descr, info, M, hcsr_row_ptr, hcsr_col_ind, hcsr_val_gold, arg, need_display);
}
}
#define INSTANTIATE(TYPE) \
template void testing_csrilu0_bad_arg<TYPE>(const Arguments& arg); \
template void testing_csrilu0<TYPE>(const Arguments& arg)
INSTANTIATE(float);
INSTANTIATE(double);
INSTANTIATE(rocsparse_float_complex);
INSTANTIATE(rocsparse_double_complex);
template <typename T>
static void testing_csrilu0_extra_template(const Arguments& arg)
{
// --------------------------------------
// diagonal matrix with zeros on diagonal
// --------------------------------------
{
rocsparse_local_handle handle;
rocsparse_local_mat_descr descr;
rocsparse_local_mat_info info;
rocsparse_index_base base = arg.baseA;
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descr, base));
const int M = 4;
// ------------------
// [ 1 ]
// [ 2 ]
// [ 0 ]
// [ 0 ]
// ------------------
host_vector<rocsparse_int> hcsr_row_ptr{base, base + 1, base + 2, base + 3, base + 4};
host_vector<rocsparse_int> hcsr_col_ind{base, base + 1, base + 2, base + 3};
host_vector<T> hcsr_val{1, 2, 0, 0};
const bool need_display = false;
test_csrilu0_matrix(
handle, descr, info, M, hcsr_row_ptr, hcsr_col_ind, hcsr_val, arg, need_display);
}
// -----------------------------------
// cancellation to create a zero pivot
// -----------------------------------
{
rocsparse_local_handle handle;
rocsparse_local_mat_descr descr;
rocsparse_local_mat_info info;
rocsparse_index_base base = arg.baseA;
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descr, base));
const int M = 4;
// ------------------
// [ 1 -1 ]
// [-1 1 ]
// [ 1 ]
// [ 1 ]
// ------------------
host_vector<rocsparse_int> hcsr_row_ptr{base, base + 2, base + 4, base + 5, base + 6};
host_vector<rocsparse_int> hcsr_col_ind{base, base + 1, base, base + 1, base + 2, base + 3};
host_vector<T> hcsr_val{1, -1, -1, 1, 1, 1};
const bool need_display = false;
test_csrilu0_matrix(
handle, descr, info, M, hcsr_row_ptr, hcsr_col_ind, hcsr_val, arg, need_display);
}
// -----------------------
// singular pivot
// -----------------------
{
rocsparse_local_handle handle;
rocsparse_local_mat_descr descr;
rocsparse_local_mat_info info;
rocsparse_index_base base = arg.baseA;
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descr, base));
double const tol = 0.001;
CHECK_ROCSPARSE_ERROR(rocsparse_csrilu0_set_tolerance(handle, info, tol));
const int M = 4;
// ------------------
// [ 1 -1 ]
// [-1 1.0001 ]
// [ 1 ]
// [ 1 ]
// ------------------
host_vector<rocsparse_int> hcsr_row_ptr{base, base + 2, base + 4, base + 5, base + 6};
host_vector<rocsparse_int> hcsr_col_ind{base, base + 1, base, base + 1, base + 2, base + 3};
host_vector<T> hcsr_val{1, -1, -1, static_cast<T>(1 + tol / 10.0), 1, 1};
const bool need_display = false;
test_csrilu0_matrix(
handle, descr, info, M, hcsr_row_ptr, hcsr_col_ind, hcsr_val, arg, need_display);
}
}
void testing_csrilu0_extra(const Arguments& arg)
{
#define CALL_TEST(TYPE) \
{ \
testing_csrilu0_extra_template<TYPE>(arg); \
}
CALL_TEST(float);
CALL_TEST(double);
CALL_TEST(rocsparse_float_complex);
CALL_TEST(rocsparse_double_complex);
#undef CALL_TEST
}
|