1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2019-2024 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#include "testing.hpp"
#include "rocsparse_enum.hpp"
template <typename T>
void testing_hybmv_bad_arg(const Arguments& arg)
{
static const size_t safe_size = 100;
const T h_alpha = static_cast<T>(1);
const T h_beta = static_cast<T>(1);
// Create rocsparse handle
rocsparse_local_handle local_handle;
// Create matrix descriptor
rocsparse_local_mat_descr local_descr;
rocsparse_local_hyb_mat local_hyb;
rocsparse_hyb_mat ptr = local_hyb;
test_hyb* thyb = reinterpret_cast<test_hyb*>(ptr);
thyb->m = safe_size;
thyb->n = safe_size;
thyb->ell_nnz = safe_size;
thyb->coo_nnz = safe_size;
thyb->ell_col_ind = (rocsparse_int*)0x4;
thyb->ell_val = (T*)0x4;
thyb->coo_row_ind = (rocsparse_int*)0x4;
thyb->coo_col_ind = (rocsparse_int*)0x4;
thyb->coo_val = (T*)0x4;
rocsparse_handle handle = local_handle;
rocsparse_operation trans = rocsparse_operation_none;
const T* alpha_device_host = &h_alpha;
const rocsparse_mat_descr descr = local_descr;
const rocsparse_hyb_mat hyb = local_hyb;
const T* x = (const T*)0x4;
const T* beta_device_host = &h_beta;
T* y = (T*)0x4;
#define PARAMS handle, trans, alpha_device_host, descr, hyb, x, beta_device_host, y
bad_arg_analysis(rocsparse_hybmv<T>, PARAMS);
for(auto matrix_type : rocsparse_matrix_type_t::values)
{
if(matrix_type != rocsparse_matrix_type_general)
{
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_type(descr, matrix_type));
EXPECT_ROCSPARSE_STATUS(rocsparse_hybmv<T>(PARAMS), rocsparse_status_not_implemented);
}
}
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_type(descr, rocsparse_matrix_type_general));
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_storage_mode(descr, rocsparse_storage_mode_unsorted));
EXPECT_ROCSPARSE_STATUS(rocsparse_hybmv<T>(PARAMS), rocsparse_status_requires_sorted_storage);
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_storage_mode(descr, rocsparse_storage_mode_sorted));
// Check negative m and n
thyb->m = -1;
thyb->n = safe_size;
EXPECT_ROCSPARSE_STATUS(rocsparse_hybmv<T>(PARAMS), rocsparse_status_invalid_size);
thyb->m = safe_size;
thyb->n = -1;
EXPECT_ROCSPARSE_STATUS(rocsparse_hybmv<T>(PARAMS), rocsparse_status_invalid_size);
#undef PARAMS
}
template <typename T>
void testing_hybmv(const Arguments& arg)
{
rocsparse_int M = arg.M;
rocsparse_int N = arg.N;
rocsparse_operation trans = arg.transA;
rocsparse_index_base base = arg.baseA;
rocsparse_hyb_partition part = arg.part;
rocsparse_int user_ell_width = arg.algo;
host_scalar<T> h_alpha(arg.get_alpha<T>());
host_scalar<T> h_beta(arg.get_beta<T>());
device_scalar<T> d_alpha(h_alpha);
device_scalar<T> d_beta(h_beta);
// Create rocsparse handle
rocsparse_local_handle handle(arg);
// Create matrix descriptor
rocsparse_local_mat_descr descr;
// Create hyb matrix
rocsparse_local_hyb_mat hyb;
// Set matrix index base
CHECK_ROCSPARSE_ERROR(rocsparse_set_mat_index_base(descr, base));
#define PARAMS(alpha_, x_, beta_, y_) handle, trans, alpha_, descr, hyb, x_, beta_, y_
rocsparse_matrix_factory<T> matrix_factory(arg, arg.timing ? false : true, false);
bool conform;
rocsparse_int nnz;
matrix_factory.init_hyb(hyb, M, N, nnz, base, conform);
if(!conform)
{
return;
}
host_dense_matrix<T> hx((trans == rocsparse_operation_none) ? N : M, 1);
host_dense_matrix<T> hy((trans == rocsparse_operation_none) ? M : N, 1);
rocsparse_matrix_utils::init_exact(hx);
rocsparse_matrix_utils::init_exact(hy);
device_dense_matrix<T> dx(hx), dy(hy);
if(arg.unit_check)
{
// Pointer mode host
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
CHECK_ROCSPARSE_ERROR(testing::rocsparse_hybmv<T>(PARAMS(h_alpha, dx, h_beta, dy)));
if(ROCSPARSE_REPRODUCIBILITY)
{
rocsparse_reproducibility::save("Y pointer mode host", dy);
}
{
// CPU hybmv
rocsparse_hyb_mat ptr = hyb;
test_hyb* dhyb = reinterpret_cast<test_hyb*>(ptr);
rocsparse_int ell_width = dhyb->ell_width;
rocsparse_int ell_nnz = dhyb->ell_nnz;
rocsparse_int coo_nnz = dhyb->coo_nnz;
host_ell_matrix<T> hA_ell;
host_coo_matrix<T> hA_coo;
if(ell_nnz > 0)
{
hA_ell.define(M, N, ell_width, base);
hA_ell.ind.template transfer_from<memory_mode::device>(
(const rocsparse_int*)dhyb->ell_col_ind);
hA_ell.val.template transfer_from<memory_mode::device>((const T*)dhyb->ell_val);
}
if(coo_nnz > 0)
{
hA_coo.define(M, N, coo_nnz, base);
hA_coo.row_ind.template transfer_from<memory_mode::device>(
(const rocsparse_int*)dhyb->coo_row_ind);
hA_coo.col_ind.template transfer_from<memory_mode::device>(
(const rocsparse_int*)dhyb->coo_col_ind);
hA_coo.val.template transfer_from<memory_mode::device>((const T*)dhyb->coo_val);
}
host_dense_matrix<T> hy_copy(hy);
// CPU hybmv
host_hybmv<T>(trans,
M,
N,
*h_alpha,
hA_ell.nnz,
hA_ell.ind,
hA_ell.val,
hA_ell.width,
hA_coo.nnz,
hA_coo.row_ind,
hA_coo.col_ind,
hA_coo.val,
hx,
*h_beta,
hy,
base);
hy.near_check(dy);
dy.transfer_from(hy_copy);
}
// Pointer mode device
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_device));
CHECK_ROCSPARSE_ERROR(testing::rocsparse_hybmv<T>(PARAMS(d_alpha, dx, d_beta, dy)));
if(ROCSPARSE_REPRODUCIBILITY)
{
rocsparse_reproducibility::save("Y pointer mode device", dy);
}
hy.near_check(dy);
}
if(arg.timing)
{
int number_cold_calls = 2;
int number_hot_calls = arg.iters;
CHECK_ROCSPARSE_ERROR(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
// Warm up
for(int iter = 0; iter < number_cold_calls; ++iter)
{
CHECK_ROCSPARSE_ERROR(rocsparse_hybmv<T>(PARAMS(h_alpha, dx, h_beta, dy)));
}
double gpu_time_used = get_time_us();
// Performance run
for(int iter = 0; iter < number_hot_calls; ++iter)
{
CHECK_ROCSPARSE_ERROR(rocsparse_hybmv<T>(PARAMS(h_alpha, dx, h_beta, dy)));
}
gpu_time_used = (get_time_us() - gpu_time_used) / number_hot_calls;
double gflop_count = spmv_gflop_count(M, nnz, *h_beta != static_cast<T>(0));
double gpu_gflops = get_gpu_gflops(gpu_time_used, gflop_count);
if(part == rocsparse_hyb_partition_user)
{
{
rocsparse_hyb_mat ptr = hyb;
test_hyb* dhyb = reinterpret_cast<test_hyb*>(ptr);
user_ell_width = dhyb->ell_width;
}
display_timing_info(display_key_t::M,
M,
display_key_t::N,
N,
display_key_t::nnz,
nnz,
display_key_t::alpha,
*h_alpha,
display_key_t::beta,
*h_beta,
display_key_t::partition,
rocsparse_partition2string(part),
display_key_t::ell_width,
user_ell_width,
display_key_t::gflops,
gpu_gflops,
display_key_t::time_ms,
get_gpu_time_msec(gpu_time_used));
}
else
{
display_timing_info(display_key_t::M,
M,
display_key_t::N,
N,
display_key_t::nnz,
nnz,
display_key_t::alpha,
*h_alpha,
display_key_t::beta,
*h_beta,
display_key_t::partition,
rocsparse_partition2string(part),
display_key_t::gflops,
gpu_gflops,
display_key_t::time_ms,
get_gpu_time_msec(gpu_time_used));
}
}
}
#define INSTANTIATE(TYPE) \
template void testing_hybmv_bad_arg<TYPE>(const Arguments& arg); \
template void testing_hybmv<TYPE>(const Arguments& arg)
INSTANTIATE(float);
INSTANTIATE(double);
INSTANTIATE(rocsparse_float_complex);
INSTANTIATE(rocsparse_double_complex);
void testing_hybmv_extra(const Arguments& arg) {}
|