1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2023-2024 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the Software), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#ifndef ROCSPARSE_SPGEMM_H
#define ROCSPARSE_SPGEMM_H
#include "../../rocsparse-types.h"
#include "rocsparse/rocsparse-export.h"
#ifdef __cplusplus
extern "C" {
#endif
/*! \ingroup generic_module
* \brief Sparse matrix sparse matrix multiplication
*
* \details
* \p rocsparse_spgemm multiplies the scalar \f$\alpha\f$ with the sparse
* \f$m \times k\f$ matrix \f$op(A)\f$ and the sparse \f$k \times n\f$ matrix \f$op(B)\f$ and
* adds the result to the sparse \f$m \times n\f$ matrix \f$D\f$ that is multiplied by
* \f$\beta\f$. The final result is stored in the sparse \f$m \times n\f$ matrix \f$C\f$,
* such that
* \f[
* C := \alpha \cdot op(A) \cdot op(B) + \beta \cdot D,
* \f]
* with
* \f[
* op(A) = \left\{
* \begin{array}{ll}
* A, & \text{if trans_A == rocsparse_operation_none}
* \end{array}
* \right.
* \f]
* and
* \f[
* op(B) = \left\{
* \begin{array}{ll}
* B, & \text{if trans_B == rocsparse_operation_none}
* \end{array}
* \right.
* \f]
*
* \p rocsparse_spgemm requires three stages to complete. First, the user passes the \ref rocsparse_spgemm_stage_buffer_size
* stage to determine the size of the required temporary storage buffer. Next, the user allocates this buffer and calls
* \p rocsparse_spgemm again with the \ref rocsparse_spgemm_stage_nnz stage which will determine the number of non-zeros
* in \f$C\f$. This stage will also fill in the row pointer array of \f$C\f$. Now that the number of non-zeros in \f$C\f$
* is known, the user allocates space for the column indices and values arrays of \f$C\f$. Finally, the user calls
* \p rocsparse_spgemm with the \ref rocsparse_spgemm_stage_compute stage to perform the actual computation which fills in
* the column indices and values arrays of \f$C\f$. Once all calls to \p rocsparse_spgemm are complete, the temporary buffer
* can be deallocated.
*
* Alternatively, the user may also want to perform sparse matrix products multiple times with matrices having the same sparsity
* pattern, but whose values differ. In this scenario, the process begins like before. First, the user calls \p rocsparse_spgemm
* with stage \ref rocsparse_spgemm_stage_buffer_size to determine the required buffer size. The user again allocates this buffer
* and calls \p rocsparse_spgemm with the stage \ref rocsparse_spgemm_stage_nnz to determine the number of non-zeros in \f$C\f$.
* The user allocates the \f$C\f$ column indices and values arrays. Now, however, the user calls \p rocsparse_spgemm with the
* \ref rocsparse_spgemm_stage_symbolic stage which will fill in the column indices array of \f$C\f$ but not the values array.
* The user is then free to repeatedly change the values of \f$A\f$, \f$B\f$, and \f$D\f$ and call \p rocsparse_spgemm with
* the \ref rocsparse_spgemm_stage_numeric stage which fill th values array of \f$C\f$. The use of the extra
* \ref rocsparse_spgemm_stage_symbolic and \ref rocsparse_spgemm_stage_numeric stages allows the user to compute sparsity pattern
* of \f$C\f$ once, but compute the values multiple times.
*
* \p rocsparse_spgemm supports multiple combinations of data types and compute types. The tables below indicate the currently
* supported different data types that can be used for for the sparse matrices \f$op(A)\f$, \f$op(B)\f$, \f$C\f$, and \f$D\f$
* and the compute type for \f$\alpha\f$ and \f$\beta\f$. The advantage of using different data types is to save on
* memory bandwidth and storage when a user application allows while performing the actual computation in a higher precision.
*
* \par Uniform Precisions:
* <table>
* <caption id="spgemm_uniform">Uniform Precisions</caption>
* <tr><th>A / B / C / D / compute_type
* <tr><td>rocsparse_datatype_f32_r
* <tr><td>rocsparse_datatype_f64_r
* <tr><td>rocsparse_datatype_f32_c
* <tr><td>rocsparse_datatype_f64_c
* </table>
*
* \p rocsparse_spgemm supports \ref rocsparse_indextype_i32 and \ref rocsparse_indextype_i64 index precisions for storing the row
* pointer and column indices arrays of the sparse matrices.
*
* In general, when multiplying two sparse matrices together, it is entirely possible that the resulting matrix will require a
* a larger index representation to store correctly. For example, when multiplying \f$A \times B\f$ using
* \ref rocsparse_indextype_i32 index types for the row pointer and column indices arrays, it may be the case that the row pointer
* of the resulting \f$C\f$ matrix would require index precision \ref rocsparse_indextype_i64. This is currently not supported.
* In this scenario, the user would need to store the \f$A\f$ and \f$B\f$ matrices using the higher index precision.
*
* \note
* This function does not produce deterministic results.
*
* \note SpGEMM requires three stages to complete. The first stage
* \ref rocsparse_spgemm_stage_buffer_size will return the size of the temporary storage buffer
* that is required for subsequent calls to \ref rocsparse_spgemm. The second stage
* \ref rocsparse_spgemm_stage_nnz will determine the number of non-zero elements of the
* resulting \f$C\f$ matrix. If the sparsity pattern of \f$C\f$ is already known, this
* stage can be skipped. In the final stage \ref rocsparse_spgemm_stage_compute, the actual
* computation is performed.
* \note If \f$\alpha == 0\f$, then \f$C = \beta \cdot D\f$ will be computed.
* \note If \f$\beta == 0\f$, then \f$C = \alpha \cdot op(A) \cdot op(B)\f$ will be
* computed.
* \note Currently only CSR and BSR formats are supported.
* \note If \ref rocsparse_spgemm_stage_symbolic is selected then the symbolic computation is performed only.
* \note If \ref rocsparse_spgemm_stage_numeric is selected then the numeric computation is performed only.
* \note For the \ref rocsparse_spgemm_stage_symbolic and \ref rocsparse_spgemm_stage_numeric stages, only
* CSR matrix format is currently supported.
* \note \f$\alpha == beta == 0\f$ is invalid.
* \note It is allowed to pass the same sparse matrix for \f$C\f$ and \f$D\f$, if both
* matrices have the same sparsity pattern.
* \note Currently, only \p trans_A == \ref rocsparse_operation_none is supported.
* \note Currently, only \p trans_B == \ref rocsparse_operation_none is supported.
* \note This function is non blocking and executed asynchronously with respect to the
* host. It may return before the actual computation has finished.
* \note Please note, that for rare matrix products with more than 4096 non-zero entries
* per row, additional temporary storage buffer is allocated by the algorithm.
*
* \note
* This routine does not support execution in a hipGraph context.
*
* @param[in]
* handle handle to the rocsparse library context queue.
* @param[in]
* trans_A sparse matrix \f$A\f$ operation type.
* @param[in]
* trans_B sparse matrix \f$B\f$ operation type.
* @param[in]
* alpha scalar \f$\alpha\f$.
* @param[in]
* A sparse matrix \f$A\f$ descriptor.
* @param[in]
* B sparse matrix \f$B\f$ descriptor.
* @param[in]
* beta scalar \f$\beta\f$.
* @param[in]
* D sparse matrix \f$D\f$ descriptor.
* @param[out]
* C sparse matrix \f$C\f$ descriptor.
* @param[in]
* compute_type floating point precision for the SpGEMM computation.
* @param[in]
* alg SpGEMM algorithm for the SpGEMM computation.
* @param[in]
* stage SpGEMM stage for the SpGEMM computation.
* @param[out]
* buffer_size number of bytes of the temporary storage buffer. buffer_size is set when
* \p temp_buffer is nullptr.
* @param[in]
* temp_buffer temporary storage buffer allocated by the user. When a nullptr is passed,
* the required allocation size (in bytes) is written to \p buffer_size and
* function returns without performing the SpGEMM operation.
*
* \retval rocsparse_status_success the operation completed successfully.
* \retval rocsparse_status_invalid_handle the library context was not initialized.
* \retval rocsparse_status_invalid_pointer \p alpha and \p beta are invalid,
* \p A, \p B, \p D, \p C or \p buffer_size pointer is invalid.
* \retval rocsparse_status_memory_error additional buffer for long rows could not be
* allocated.
* \retval rocsparse_status_not_implemented
* \p trans_A != \ref rocsparse_operation_none or
* \p trans_B != \ref rocsparse_operation_none.
*
* \par Example
* \code{.c}
* // A - m x k
* // B - k x n
* // C - m x n
* int m = 400;
* int n = 400;
* int k = 300;
*
* std::vector<int> hcsr_row_ptr_A = {...}; // host A m x k matrix
* std::vector<int> hcsr_col_ind_A = {...}; // host A m x k matrix
* std::vector<float> hcsr_val_A = {...}; // host A m x k matrix
*
* std::vector<int> hcsr_row_ptr_B = {...}; // host B k x n matrix
* std::vector<int> hcsr_col_ind_B = {...}; // host B k x n matrix
* std::vector<float> hcsr_val_B = {...}; // host B k x n matrix
*
* int nnz_A = hcsr_val_A.size();
* int nnz_B = hcsr_val_B.size();
*
* float alpha = 1.0f;
* float beta = 0.0f;
*
* int* dcsr_row_ptr_A = nullptr;
* int* dcsr_col_ind_A = nullptr;
* float* dcsr_val_A = nullptr;
*
* int* dcsr_row_ptr_B = nullptr;
* int* dcsr_col_ind_B = nullptr;
* float* dcsr_val_B = nullptr;
*
* int* dcsr_row_ptr_C = nullptr;
*
* hipMalloc((void**)&dcsr_row_ptr_A, (m + 1) * sizeof(int));
* hipMalloc((void**)&dcsr_col_ind_A, nnz_A * sizeof(int));
* hipMalloc((void**)&dcsr_val_A, nnz_A * sizeof(float));
*
* hipMalloc((void**)&dcsr_row_ptr_B, (k + 1) * sizeof(int));
* hipMalloc((void**)&dcsr_col_ind_B, nnz_B * sizeof(int));
* hipMalloc((void**)&dcsr_val_B, nnz_B * sizeof(float));
*
* hipMalloc((void**)&dcsr_row_ptr_C, (m + 1) * sizeof(int));
*
* hipMemcpy(dcsr_row_ptr_A, hcsr_row_ptr_A.data(), (m + 1) * sizeof(int), hipMemcpyHostToDevice);
* hipMemcpy(dcsr_col_ind_A, hcsr_col_ind_A.data(), nnz_A * sizeof(int), hipMemcpyHostToDevice);
* hipMemcpy(dcsr_val_A, hcsr_val_A.data(), nnz_A * sizeof(float), hipMemcpyHostToDevice);
*
* hipMemcpy(dcsr_row_ptr_B, hcsr_row_ptr_B.data(), (k + 1) * sizeof(int), hipMemcpyHostToDevice);
* hipMemcpy(dcsr_col_ind_B, hcsr_col_ind_B.data(), nnz_B * sizeof(int), hipMemcpyHostToDevice);
* hipMemcpy(dcsr_val_B, hcsr_val_B.data(), nnz_B * sizeof(float), hipMemcpyHostToDevice);
*
* rocsparse_handle handle;
* rocsparse_spmat_descr matA, matB, matC, matD;
* void* temp_buffer = NULL;
* size_t buffer_size = 0;
*
* rocsparse_operation trans_A = rocsparse_operation_none;
* rocsparse_operation trans_B = rocsparse_operation_none;
* rocsparse_index_base index_base = rocsparse_index_base_zero;
* rocsparse_indextype itype = rocsparse_indextype_i32;
* rocsparse_indextype jtype = rocsparse_indextype_i32;
* rocsparse_datatype ttype = rocsparse_datatype_f32_r;
*
* rocsparse_create_handle(&handle);
*
* // Create sparse matrix A in CSR format
* rocsparse_create_csr_descr(&matA, m, k, nnz_A,
* dcsr_row_ptr_A, dcsr_col_ind_A, dcsr_val_A,
* itype, jtype,
* index_base, ttype);
*
* // Create sparse matrix B in CSR format
* rocsparse_create_csr_descr(&matB, k, n, nnz_B,
* dcsr_row_ptr_B, dcsr_col_ind_B, dcsr_val_B,
* itype, jtype,
* index_base, ttype);
*
* // Create sparse matrix C in CSR format
* rocsparse_create_csr_descr(&matC, m, n, 0,
* dcsr_row_ptr_C, nullptr, nullptr,
* itype, jtype,
* index_base, ttype);
*
* // Create sparse matrix D in CSR format
* rocsparse_create_csr_descr(&matD, 0, 0, 0,
* nullptr, nullptr, nullptr,
* itype, jtype,
* index_base, ttype);
*
* // Determine buffer size
* rocsparse_spgemm(handle,
* trans_A,
* trans_B,
* &alpha,
* matA,
* matB,
* &beta,
* matD,
* matC,
* ttype,
* rocsparse_spgemm_alg_default,
* rocsparse_spgemm_stage_buffer_size,
* &buffer_size,
* nullptr);
*
* hipMalloc(&temp_buffer, buffer_size);
*
* // Determine number of non-zeros in C matrix
* rocsparse_spgemm(handle,
* trans_A,
* trans_B,
* &alpha,
* matA,
* matB,
* &beta,
* matD,
* matC,
* ttype,
* rocsparse_spgemm_alg_default,
* rocsparse_spgemm_stage_nnz,
* &buffer_size,
* temp_buffer);
*
* int64_t rows_C;
* int64_t cols_C;
* int64_t nnz_C;
*
* // Extract number of non-zeros in C matrix so we can allocate the column indices and values arrays
* rocsparse_spmat_get_size(matC, &rows_C, &cols_C, &nnz_C);
*
* int* dcsr_col_ind_C;
* float* dcsr_val_C;
* hipMalloc((void**)&dcsr_col_ind_C, sizeof(int) * nnz_C);
* hipMalloc((void**)&dcsr_val_C, sizeof(float) * nnz_C);
*
* // Set C matrix pointers
* rocsparse_csr_set_pointers(matC, dcsr_row_ptr_C, dcsr_col_ind_C, dcsr_val_C);
*
* // SpGEMM computation
* rocsparse_spgemm(handle,
* trans_A,
* trans_B,
* &alpha,
* matA,
* matB,
* &beta,
* matD,
* matC,
* ttype,
* rocsparse_spgemm_alg_default,
* rocsparse_spgemm_stage_compute,
* &buffer_size,
* temp_buffer);
*
* // Copy C matrix result back to host
* std::vector<int> hcsr_row_ptr_C(m + 1);
* std::vector<int> hcsr_col_ind_C(nnz_C);
* std::vector<float> hcsr_val_C(nnz_C);
*
* hipMemcpy(hcsr_row_ptr_C.data(), dcsr_row_ptr_C, sizeof(int) * (m + 1), hipMemcpyDeviceToHost);
* hipMemcpy(hcsr_col_ind_C.data(), dcsr_col_ind_C, sizeof(int) * nnz_C, hipMemcpyDeviceToHost);
* hipMemcpy(hcsr_val_C.data(), dcsr_val_C, sizeof(float) * nnz_C, hipMemcpyDeviceToHost);
*
* // Destroy matrix descriptors
* rocsparse_destroy_spmat_descr(matA);
* rocsparse_destroy_spmat_descr(matB);
* rocsparse_destroy_spmat_descr(matC);
* rocsparse_destroy_spmat_descr(matD);
* rocsparse_destroy_handle(handle);
*
* // Free device arrays
* hipFree(temp_buffer);
* hipFree(dcsr_row_ptr_A);
* hipFree(dcsr_col_ind_A);
* hipFree(dcsr_val_A);
*
* hipFree(dcsr_row_ptr_B);
* hipFree(dcsr_col_ind_B);
* hipFree(dcsr_val_B);
*
* hipFree(dcsr_row_ptr_C);
* hipFree(dcsr_col_ind_C);
* hipFree(dcsr_val_C);
* \endcode
*/
ROCSPARSE_EXPORT
rocsparse_status rocsparse_spgemm(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
const void* alpha,
rocsparse_const_spmat_descr A,
rocsparse_const_spmat_descr B,
const void* beta,
rocsparse_const_spmat_descr D,
rocsparse_spmat_descr C,
rocsparse_datatype compute_type,
rocsparse_spgemm_alg alg,
rocsparse_spgemm_stage stage,
size_t* buffer_size,
void* temp_buffer);
#ifdef __cplusplus
}
#endif
#endif /* ROCSPARSE_SPGEMM_H */
|