1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*! \file */
/* ************************************************************************
* Copyright (C) 2023-2024 Advanced Micro Devices, Inc. All rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the Software), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* ************************************************************************ */
#ifndef ROCSPARSE_GEMMI_H
#define ROCSPARSE_GEMMI_H
#include "../../rocsparse-types.h"
#include "rocsparse/rocsparse-export.h"
#ifdef __cplusplus
extern "C" {
#endif
/*! \ingroup level3_module
* \brief Dense matrix sparse matrix multiplication using CSR storage format
*
* \details
* \p rocsparse_gemmi multiplies the scalar \f$\alpha\f$ with a column-oriented dense \f$m \times k\f$
* matrix \f$op(A)\f$ and the sparse \f$k \times n\f$ matrix \f$op(B)\f$, defined in CSR
* storage format and adds the result to the column-oriented dense \f$m \times n\f$ matrix \f$C\f$ that
* is multiplied by the scalar \f$\beta\f$, such that
* \f[
* C := \alpha \cdot op(A) \cdot op(B) + \beta \cdot C
* \f]
* with
* \f[
* op(A) = \left\{
* \begin{array}{ll}
* A, & \text{if trans_A == rocsparse_operation_none} \\
* A^T, & \text{if trans_A == rocsparse_operation_transpose} \\
* A^H, & \text{if trans_A == rocsparse_operation_conjugate_transpose}
* \end{array}
* \right.
* \f]
* and
* \f[
* op(B) = \left\{
* \begin{array}{ll}
* B, & \text{if trans_B == rocsparse_operation_none} \\
* B^T, & \text{if trans_B == rocsparse_operation_transpose} \\
* B^H, & \text{if trans_B == rocsparse_operation_conjugate_transpose}
* \end{array}
* \right.
* \f]
*
* \note
* Currently, only \p trans_A == \ref rocsparse_operation_none is supported.
*
* \note
* Currently, only \p trans_B == \ref rocsparse_operation_transpose is supported.
*
* \note
* This function is non blocking and executed asynchronously with respect to the host.
* It may return before the actual computation has finished.
*
* \note
* This routine supports execution in a hipGraph context.
*
* @param[in]
* handle handle to the rocsparse library context queue.
* @param[in]
* trans_A matrix \f$A\f$ operation type.
* @param[in]
* trans_B matrix \f$B\f$ operation type.
* @param[in]
* m number of rows of the column-oriented dense matrix \f$A\f$.
* @param[in]
* n number of columns of the sparse CSR matrix \f$op(B)\f$ and \f$C\f$.
* @param[in]
* k number of columns of the column-oriented dense matrix \f$A\f$.
* @param[in]
* nnz number of non-zero entries of the sparse CSR matrix \f$B\f$.
* @param[in]
* alpha scalar \f$\alpha\f$.
* @param[in]
* A array of dimension \f$lda \times k\f$ (\f$op(A) == A\f$) or
* \f$lda \times m\f$ (\f$op(A) == A^T\f$ or \f$op(A) == A^H\f$).
* @param[in]
* lda leading dimension of \f$A\f$, must be at least \f$m\f$
* (\f$op(A) == A\f$) or \f$k\f$ (\f$op(A) == A^T\f$ or
* \f$op(A) == A^H\f$).
* @param[in]
* descr descriptor of the sparse CSR matrix \f$B\f$. Currently, only
* \ref rocsparse_matrix_type_general is supported.
* @param[in]
* csr_val array of \p nnz elements of the sparse CSR matrix \f$B\f$.
* @param[in]
* csr_row_ptr array of \p m+1 elements that point to the start of every row of the
* sparse CSR matrix \f$B\f$.
* @param[in]
* csr_col_ind array of \p nnz elements containing the column indices of the sparse CSR
* matrix \f$B\f$.
* @param[in]
* beta scalar \f$\beta\f$.
* @param[inout]
* C column-oriented dense matrix of dimension \f$ldc \times n\f$ that holds the values of \f$C\f$.
* @param[in]
* ldc leading dimension of \f$C\f$, must be at least \f$m\f$.
*
* \retval rocsparse_status_success the operation completed successfully.
* \retval rocsparse_status_invalid_handle the library context was not initialized.
* \retval rocsparse_status_invalid_size \p m, \p n, \p k, \p nnz, \p lda or \p ldc
* is invalid.
* \retval rocsparse_status_invalid_pointer \p alpha, \p A, \p csr_val,
* \p csr_row_ptr, \p csr_col_ind, \p beta or \p C pointer is invalid.
*
* \par Example
* This example multiplies a column-oriented dense matrix with a CSC matrix.
* \code{.c}
* rocsparse_int m = 2;
* rocsparse_int n = 5;
* rocsparse_int k = 3;
* rocsparse_int nnz = 8;
* rocsparse_int lda = m;
* rocsparse_int ldc = m;
*
* // Matrix A (m x k)
* // ( 9.0 10.0 11.0 )
* // ( 12.0 13.0 14.0 )
*
* // Matrix B (k x n)
* // ( 1.0 2.0 0.0 3.0 0.0 )
* // ( 0.0 4.0 5.0 0.0 0.0 )
* // ( 6.0 0.0 0.0 7.0 8.0 )
*
* // Matrix C (m x n)
* // ( 15.0 16.0 17.0 18.0 19.0 )
* // ( 20.0 21.0 22.0 23.0 24.0 )
*
* A[lda * k] = {9.0, 12.0, 10.0, 13.0, 11.0, 14.0}; // device memory
* csc_col_ptr_B[n + 1] = {0, 2, 4, 5, 7, 8}; // device memory
* csc_row_ind_B[nnz] = {0, 0, 1, 1, 2, 3, 3, 4}; // device memory
* csc_val_B[nnz] = {1.0, 6.0, 2.0, 4.0, 5.0, 3.0, 7.0, 8.0}; // device memory
* C[ldc * n] = {15.0, 20.0, 16.0, 21.0, 17.0, 22.0, // device memory
* 18.0, 23.0, 19.0, 24.0};
*
* // alpha and beta
* float alpha = 1.0f;
* float beta = 0.0f;
*
* // Perform the matrix multiplication
* rocsparse_sgemmi(handle,
* rocsparse_operation_none,
* rocsparse_operation_transpose,
* m,
* n,
* k,
* nnz,
* &alpha,
* A,
* lda,
* descr_B,
* csc_val_B,
* csc_col_ptr_B,
* csc_row_ind_B,
* &beta,
* C,
* ldc);
* \endcode
*/
/**@{*/
ROCSPARSE_EXPORT
rocsparse_status rocsparse_sgemmi(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
rocsparse_int m,
rocsparse_int n,
rocsparse_int k,
rocsparse_int nnz,
const float* alpha,
const float* A,
rocsparse_int lda,
const rocsparse_mat_descr descr,
const float* csr_val,
const rocsparse_int* csr_row_ptr,
const rocsparse_int* csr_col_ind,
const float* beta,
float* C,
rocsparse_int ldc);
ROCSPARSE_EXPORT
rocsparse_status rocsparse_dgemmi(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
rocsparse_int m,
rocsparse_int n,
rocsparse_int k,
rocsparse_int nnz,
const double* alpha,
const double* A,
rocsparse_int lda,
const rocsparse_mat_descr descr,
const double* csr_val,
const rocsparse_int* csr_row_ptr,
const rocsparse_int* csr_col_ind,
const double* beta,
double* C,
rocsparse_int ldc);
ROCSPARSE_EXPORT
rocsparse_status rocsparse_cgemmi(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
rocsparse_int m,
rocsparse_int n,
rocsparse_int k,
rocsparse_int nnz,
const rocsparse_float_complex* alpha,
const rocsparse_float_complex* A,
rocsparse_int lda,
const rocsparse_mat_descr descr,
const rocsparse_float_complex* csr_val,
const rocsparse_int* csr_row_ptr,
const rocsparse_int* csr_col_ind,
const rocsparse_float_complex* beta,
rocsparse_float_complex* C,
rocsparse_int ldc);
ROCSPARSE_EXPORT
rocsparse_status rocsparse_zgemmi(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
rocsparse_int m,
rocsparse_int n,
rocsparse_int k,
rocsparse_int nnz,
const rocsparse_double_complex* alpha,
const rocsparse_double_complex* A,
rocsparse_int lda,
const rocsparse_mat_descr descr,
const rocsparse_double_complex* csr_val,
const rocsparse_int* csr_row_ptr,
const rocsparse_int* csr_col_ind,
const rocsparse_double_complex* beta,
rocsparse_double_complex* C,
rocsparse_int ldc);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* ROCSPARSE_GEMMI_H */
|