1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
/*
* Copyright 2008-2013 NVIDIA Corporation
* Modifications Copyright© 2019 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thrust/iterator/zip_iterator.h>
#include <thrust/reduce.h>
#if THRUST_DEVICE_SYSTEM == THRUST_DEVICE_SYSTEM_CUDA
#include <unittest/cuda/testframework.h>
#endif
#include "test_header.hpp"
typedef ::testing::Types<Params<unsigned short>,
Params<unsigned int>,
Params<unsigned long>,
Params<unsigned long long>>
UnsignedIntegralTypesParams;
TESTS_DEFINE(ZipIteratorReduceByKeyTests, UnsignedIntegralTypesParams);
template <typename Tuple>
struct TuplePlus
{
__host__ __device__ Tuple operator()(Tuple x, Tuple y) const
{
using namespace thrust;
return make_tuple(get<0>(x) + get<0>(y), get<1>(x) + get<1>(y));
}
}; // end TuplePlus
TYPED_TEST(ZipIteratorReduceByKeyTests, TestZipIteratorReduceByKey)
{
using T = typename TestFixture::input_type;
SCOPED_TRACE(testing::Message() << "with device_id= " << test::set_device_from_ctest());
for(auto size : get_sizes())
{
SCOPED_TRACE(testing::Message() << "with size= " << size);
for(auto seed : get_seeds())
{
SCOPED_TRACE(testing::Message() << "with seed= " << seed);
thrust::host_vector<T> h_data0 = get_random_data<T>(
size, std::numeric_limits<T>::min(), std::numeric_limits<T>::max(), seed);
thrust::host_vector<T> h_data1 = get_random_data<T>(
size,
std::numeric_limits<T>::min(),
std::numeric_limits<T>::max(),
seed + seed_value_addition
);
thrust::host_vector<T> h_data2 = get_random_data<T>(
size,
std::numeric_limits<T>::min(),
std::numeric_limits<T>::max(),
seed + 2 * seed_value_addition
);
thrust::device_vector<T> d_data0 = h_data0;
thrust::device_vector<T> d_data1 = h_data1;
thrust::device_vector<T> d_data2 = h_data2;
typedef thrust::tuple<T, T> Tuple;
// integer key, tuple value
{
thrust::host_vector<T> h_data3(size, 0);
thrust::host_vector<T> h_data4(size, 0);
thrust::host_vector<T> h_data5(size, 0);
thrust::device_vector<T> d_data3(size, 0);
thrust::device_vector<T> d_data4(size, 0);
thrust::device_vector<T> d_data5(size, 0);
// run on host
thrust::reduce_by_key(
h_data0.begin(), h_data0.end(),
thrust::make_zip_iterator(thrust::make_tuple(h_data1.begin(), h_data2.begin())),
h_data3.begin(),
thrust::make_zip_iterator(thrust::make_tuple(h_data4.begin(), h_data5.begin())),
thrust::equal_to<T>(),
TuplePlus<Tuple>());
// run on device
thrust::reduce_by_key(
d_data0.begin(), d_data0.end(),
thrust::make_zip_iterator(thrust::make_tuple(d_data1.begin(), d_data2.begin())),
d_data3.begin(),
thrust::make_zip_iterator(thrust::make_tuple(d_data4.begin(), d_data5.begin())),
thrust::equal_to<T>(),
TuplePlus<Tuple>());
ASSERT_EQ(h_data3, d_data3);
ASSERT_EQ(h_data4, d_data4);
ASSERT_EQ(h_data5, d_data5);
}
// The tests below get miscompiled on Tesla hw for 8b types
#if THRUST_DEVICE_SYSTEM == THRUST_DEVICE_SYSTEM_CUDA
if(const CUDATestDriver* driver
= dynamic_cast<const CUDATestDriver*>(&UnitTestDriver::s_driver()))
{
if(typeid(T) == typeid(unittest::uint8_t)
&& driver->current_device_architecture() < 200)
{
KNOWN_FAILURE;
} // end if
} // end if
#endif
// tuple key, tuple value
{
thrust::host_vector<T> h_data3(size, 0);
thrust::host_vector<T> h_data4(size, 0);
thrust::host_vector<T> h_data5(size, 0);
thrust::host_vector<T> h_data6(size, 0);
thrust::device_vector<T> d_data3(size, 0);
thrust::device_vector<T> d_data4(size, 0);
thrust::device_vector<T> d_data5(size, 0);
thrust::device_vector<T> d_data6(size, 0);
// run on host
reduce_by_key(thrust::make_zip_iterator(thrust::make_tuple(h_data0.begin(), h_data0.begin())),
thrust::make_zip_iterator(thrust::make_tuple(h_data0.end(), h_data0.end())),
thrust::make_zip_iterator(thrust::make_tuple(h_data1.begin(), h_data2.begin())),
thrust::make_zip_iterator(thrust::make_tuple(h_data3.begin(), h_data4.begin())),
thrust::make_zip_iterator(thrust::make_tuple(h_data5.begin(), h_data6.begin())),
thrust::equal_to<Tuple>(),
TuplePlus<Tuple>());
// run on device
reduce_by_key(thrust::make_zip_iterator(thrust::make_tuple(d_data0.begin(), d_data0.begin())),
thrust::make_zip_iterator(thrust::make_tuple(d_data0.end(), d_data0.end())),
thrust::make_zip_iterator(thrust::make_tuple(d_data1.begin(), d_data2.begin())),
thrust::make_zip_iterator(thrust::make_tuple(d_data3.begin(), d_data4.begin())),
thrust::make_zip_iterator(thrust::make_tuple(d_data5.begin(), d_data6.begin())),
thrust::equal_to<Tuple>(),
TuplePlus<Tuple>());
ASSERT_EQ(h_data3, d_data3);
ASSERT_EQ(h_data4, d_data4);
ASSERT_EQ(h_data5, d_data5);
ASSERT_EQ(h_data6, d_data6);
}
}
}
}
|