1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
// MIT License
//
// Copyright (c) 2024 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef ROCTHRUST_BENCHMARKS_BENCH_UTILS_BENCH_UTILS_HPP_
#define ROCTHRUST_BENCHMARKS_BENCH_UTILS_BENCH_UTILS_HPP_
// Utils
#include "cmdparser.hpp"
#include "common/types.hpp"
#include "custom_reporter.hpp"
#include "generation_utils.hpp"
#include <thrust/execution_policy.h>
// HIP/CUDA
#if THRUST_DEVICE_SYSTEM == THRUST_DEVICE_SYSTEM_HIP
#include <hip/hip_runtime.h>
#elif THRUST_DEVICE_SYSTEM == THRUST_DEVICE_SYSTEM_CUDA
#include <cuda_runtime.h>
#endif
// Google Benchmark
#include <benchmark/benchmark.h>
// STL
#include <algorithm>
#include <array>
#include <chrono>
#include <cstdint>
#include <iostream>
#include <random>
#include <regex>
#include <sstream>
#include <string>
#include <cmath>
#include <cstddef>
#include <numeric>
namespace bench_utils
{
#if(THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_HIP)
#define HIP_CHECK(condition) \
{ \
hipError_t error = condition; \
if(error != hipSuccess) \
{ \
std::cout << "HIP error: " << error << " line: " << __LINE__ << std::endl; \
exit(error); \
} \
}
/// \brief Timer for measuring time from the device's side
class gpu_timer
{
hipEvent_t m_start;
hipEvent_t m_stop;
public:
__forceinline__ gpu_timer()
{
HIP_CHECK(hipEventCreate(&m_start));
HIP_CHECK(hipEventCreate(&m_stop));
}
__forceinline__ ~gpu_timer()
{
HIP_CHECK(hipEventDestroy(m_start));
HIP_CHECK(hipEventDestroy(m_stop));
}
// move-only
gpu_timer(const gpu_timer&) = delete;
gpu_timer(gpu_timer&&) = default;
gpu_timer& operator=(const gpu_timer&) = delete;
gpu_timer& operator=(gpu_timer&&) = default;
__forceinline__ void start(hipStream_t stream)
{
HIP_CHECK(hipEventRecord(m_start, stream));
}
__forceinline__ void stop(hipStream_t stream)
{
HIP_CHECK(hipEventRecord(m_stop, stream));
}
[[nodiscard]] __forceinline__ bool ready() const
{
const hipError_t state = hipEventQuery(m_stop);
if(state == hipErrorNotReady)
{
return false;
}
HIP_CHECK(state);
return true;
}
// In seconds:
[[nodiscard]] __forceinline__ float64_t get_duration() const
{
HIP_CHECK(hipEventSynchronize(m_stop));
float32_t elapsed_time;
// According to docs, this is in ms with a resolution of ~1 microseconds.
HIP_CHECK(hipEventElapsedTime(&elapsed_time, m_start, m_stop));
return elapsed_time / 1000.0;
}
};
#elif(THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC)
#define CUDA_SAFE_CALL_NO_SYNC(call) \
do \
{ \
cudaError err = call; \
if(cudaSuccess != err) \
{ \
fprintf(stderr, \
"CUDA error in file '%s' in line %i : %s.\n", \
__FILE__, \
__LINE__, \
cudaGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
} while(0)
#define CUDA_SAFE_CALL(call) \
do \
{ \
CUDA_SAFE_CALL_NO_SYNC(call); \
cudaError err = cudaDeviceSynchronize(); \
if(cudaSuccess != err) \
{ \
fprintf(stderr, \
"CUDA error in file '%s' in line %i : %s.\n", \
__FILE__, \
__LINE__, \
cudaGetErrorString(err)); \
exit(EXIT_FAILURE); \
} \
} while(0)
class gpu_timer
{
cudaEvent_t start_;
cudaEvent_t stop_;
public:
__forceinline__ gpu_timer()
{
CUDA_SAFE_CALL(cudaEventCreate(&start_));
CUDA_SAFE_CALL(cudaEventCreate(&stop_));
}
__forceinline__ ~gpu_timer()
{
CUDA_SAFE_CALL(cudaEventDestroy(start_));
CUDA_SAFE_CALL(cudaEventDestroy(stop_));
}
// move-only
gpu_timer(const gpu_timer&) = delete;
gpu_timer(gpu_timer&&) = default;
gpu_timer& operator=(const gpu_timer&) = delete;
gpu_timer& operator=(gpu_timer&&) = default;
__forceinline__ void start(cudaStream_t stream)
{
CUDA_SAFE_CALL(cudaEventRecord(start_, stream));
}
__forceinline__ void stop(cudaStream_t stream)
{
CUDA_SAFE_CALL(cudaEventRecord(m_stop, stream));
}
[[nodiscard]] __forceinline__ bool ready() const
{
const cudaError_t state = cudaEventQuery(m_stop);
if(state == cudaErrorNotReady)
{
return false;
}
CUDA_SAFE_CALL(state);
return true;
}
// In seconds:
[[nodiscard]] __forceinline__ nvbench::float64_t get_duration() const
{
CUDA_SAFE_CALL(cudaEventSynchronize(m_stop));
float elapsed_time;
// According to docs, this is in ms with a resolution of ~0.5 microseconds.
CUDA_SAFE_CALL(cudaEventElapsedTime(&elapsed_time, m_start, m_stop));
return elapsed_time / 1000.0;
}
};
#endif
//// \brief Gets the peak global memory bus bandwidth in bytes/sec.
std::size_t get_global_memory_bus_bandwidth(int device_id)
{
hipDeviceProp_t props;
HIP_CHECK(hipGetDeviceProperties(&props, device_id));
// Get the peak clock rate of the global memory bus in Hz.
const std::size_t global_memory_bus_peak_clock_rate
= static_cast<std::size_t>(props.memoryClockRate) * 1000; /*kHz -> Hz*/
// Get width of the global memory bus in bits.
const int get_global_memory_bus_width = props.memoryBusWidth;
// Multiply by 2 because of DDR,
// CHAR_BIT to convert bus_width to bytes.
return 2 * global_memory_bus_peak_clock_rate
* static_cast<std::size_t>(get_global_memory_bus_width / CHAR_BIT);
}
/// \brief Adds device info and properties to the Google benchmark info
inline void add_common_benchmark_info()
{
hipDeviceProp_t devProp;
int device_id = 0;
HIP_CHECK(hipGetDevice(&device_id));
HIP_CHECK(hipGetDeviceProperties(&devProp, device_id));
auto str = [](const std::string& name, const std::string& val) {
benchmark::AddCustomContext(name, val);
};
auto num = [](const std::string& name, const auto& value) {
benchmark::AddCustomContext(name, std::to_string(value));
};
auto dim2 = [num](const std::string& name, const auto* values) {
num(name + "_x", values[0]);
num(name + "_y", values[1]);
};
auto dim3 = [num, dim2](const std::string& name, const auto* values) {
dim2(name, values);
num(name + "_z", values[2]);
};
str("hdp_name", devProp.name);
num("hdp_total_global_mem", devProp.totalGlobalMem);
num("hdp_shared_mem_per_block", devProp.sharedMemPerBlock);
num("hdp_regs_per_block", devProp.regsPerBlock);
num("hdp_warp_size", devProp.warpSize);
num("hdp_max_threads_per_block", devProp.maxThreadsPerBlock);
dim3("hdp_max_threads_dim", devProp.maxThreadsDim);
dim3("hdp_max_grid_size", devProp.maxGridSize);
num("hdp_clock_rate", devProp.clockRate);
num("hdp_memory_clock_rate", devProp.memoryClockRate);
num("hdp_memory_bus_width", devProp.memoryBusWidth);
num("hdp_peak_global_mem_bus_bandwidth", get_global_memory_bus_bandwidth(device_id));
num("hdp_total_const_mem", devProp.totalConstMem);
num("hdp_major", devProp.major);
num("hdp_minor", devProp.minor);
num("hdp_multi_processor_count", devProp.multiProcessorCount);
num("hdp_l2_cache_size", devProp.l2CacheSize);
num("hdp_max_threads_per_multiprocessor", devProp.maxThreadsPerMultiProcessor);
num("hdp_compute_mode", devProp.computeMode);
num("hdp_clock_instruction_rate", devProp.clockInstructionRate);
num("hdp_concurrent_kernels", devProp.concurrentKernels);
num("hdp_pci_domain_id", devProp.pciDomainID);
num("hdp_pci_bus_id", devProp.pciBusID);
num("hdp_pci_device_id", devProp.pciDeviceID);
num("hdp_max_shared_memory_per_multi_processor", devProp.maxSharedMemoryPerMultiProcessor);
num("hdp_is_multi_gpu_board", devProp.isMultiGpuBoard);
num("hdp_can_map_host_memory", devProp.canMapHostMemory);
str("hdp_gcn_arch_name", devProp.gcnArchName);
num("hdp_integrated", devProp.integrated);
num("hdp_cooperative_launch", devProp.cooperativeLaunch);
num("hdp_cooperative_multi_device_launch", devProp.cooperativeMultiDeviceLaunch);
num("hdp_max_texture_1d_linear", devProp.maxTexture1DLinear);
num("hdp_max_texture_1d", devProp.maxTexture1D);
dim2("hdp_max_texture_2d", devProp.maxTexture2D);
dim3("hdp_max_texture_3d", devProp.maxTexture3D);
num("hdp_mem_pitch", devProp.memPitch);
num("hdp_texture_alignment", devProp.textureAlignment);
num("hdp_texture_pitch_alignment", devProp.texturePitchAlignment);
num("hdp_kernel_exec_timeout_enabled", devProp.kernelExecTimeoutEnabled);
num("hdp_ecc_enabled", devProp.ECCEnabled);
num("hdp_tcc_driver", devProp.tccDriver);
num("hdp_cooperative_multi_device_unmatched_func", devProp.cooperativeMultiDeviceUnmatchedFunc);
num("hdp_cooperative_multi_device_unmatched_grid_dim",
devProp.cooperativeMultiDeviceUnmatchedGridDim);
num("hdp_cooperative_multi_device_unmatched_block_dim",
devProp.cooperativeMultiDeviceUnmatchedBlockDim);
num("hdp_cooperative_multi_device_unmatched_shared_mem",
devProp.cooperativeMultiDeviceUnmatchedSharedMem);
num("hdp_is_large_bar", devProp.isLargeBar);
num("hdp_asic_revision", devProp.asicRevision);
num("hdp_managed_memory", devProp.managedMemory);
num("hdp_direct_managed_mem_access_from_host", devProp.directManagedMemAccessFromHost);
num("hdp_concurrent_managed_access", devProp.concurrentManagedAccess);
num("hdp_pageable_memory_access", devProp.pageableMemoryAccess);
num("hdp_pageable_memory_access_uses_host_page_tables",
devProp.pageableMemoryAccessUsesHostPageTables);
const auto arch = devProp.arch;
num("hdp_arch_has_global_int32_atomics", arch.hasGlobalInt32Atomics);
num("hdp_arch_has_global_float_atomic_exch", arch.hasGlobalFloatAtomicExch);
num("hdp_arch_has_shared_int32_atomics", arch.hasSharedInt32Atomics);
num("hdp_arch_has_shared_float_atomic_exch", arch.hasSharedFloatAtomicExch);
num("hdp_arch_has_float_atomic_add", arch.hasFloatAtomicAdd);
num("hdp_arch_has_global_int64_atomics", arch.hasGlobalInt64Atomics);
num("hdp_arch_has_shared_int64_atomics", arch.hasSharedInt64Atomics);
num("hdp_arch_has_doubles", arch.hasDoubles);
num("hdp_arch_has_warp_vote", arch.hasWarpVote);
num("hdp_arch_has_warp_ballot", arch.hasWarpBallot);
num("hdp_arch_has_warp_shuffle", arch.hasWarpShuffle);
num("hdp_arch_has_funnel_shift", arch.hasFunnelShift);
num("hdp_arch_has_thread_fence_system", arch.hasThreadFenceSystem);
num("hdp_arch_has_sync_threads_ext", arch.hasSyncThreadsExt);
num("hdp_arch_has_surface_funcs", arch.hasSurfaceFuncs);
num("hdp_arch_has_3d_grid", arch.has3dGrid);
num("hdp_arch_has_dynamic_parallelism", arch.hasDynamicParallelism);
}
// Binary operators
struct less_t
{
template <typename T>
__host__ __device__ bool operator()(const T& lhs, const T& rhs) const
{
return lhs < rhs;
}
};
struct max_t
{
template <typename T>
__host__ __device__ T operator()(const T& lhs, const T& rhs)
{
less_t less {};
return less(lhs, rhs) ? rhs : lhs;
}
};
struct bench_naming
{
public:
enum format
{
json,
human,
txt
};
static format& get_format()
{
static format storage = human;
return storage;
}
static void set_format(const std::string& argument)
{
format result = human;
if(argument == "json")
{
result = json;
}
else if(argument == "txt")
{
result = txt;
}
get_format() = result;
}
private:
static std::string matches_as_json(std::sregex_iterator& matches)
{
std::stringstream result;
int brackets_count = 1;
result << "{";
bool insert_comma = false;
for(std::sregex_iterator i = matches; i != std::sregex_iterator(); ++i)
{
std::smatch m = *i;
if(insert_comma)
{
result << ",";
}
else
{
insert_comma = true;
}
result << "\"" << m[1].str() << "\":";
if(m[2].length() > 0)
{
if(m[2].str().find_first_not_of("0123456789") == std::string::npos)
{
result << m[2].str();
}
else
{
result << "\"" << m[2].str() << "\"";
}
if(m[3].length() > 0 && brackets_count > 0)
{
int n = std::min(brackets_count, static_cast<int>(m[3].length()));
brackets_count -= n;
for(int c = 0; c < n; c++)
{
result << "}";
}
}
}
else
{
brackets_count++;
result << "{";
insert_comma = false;
}
}
while(brackets_count > 0)
{
brackets_count--;
result << "}";
}
return result.str();
}
static std::string matches_as_human(std::sregex_iterator& matches)
{
std::stringstream result;
int brackets_count = 0;
bool insert_comma = false;
for(std::sregex_iterator i = matches; i != std::sregex_iterator(); ++i)
{
std::smatch m = *i;
if(insert_comma)
{
result << ",";
}
else
{
insert_comma = true;
}
if(m[2].length() > 0)
{
result << m[2].str();
if(m[3].length() > 0 && brackets_count > 0)
{
int n = std::min(brackets_count, static_cast<int>(m[3].length()));
brackets_count -= n;
for(int c = 0; c < n; c++)
{
result << ">";
}
}
}
else
{
brackets_count++;
result << "<";
insert_comma = false;
}
}
while(brackets_count > 0)
{
brackets_count--;
result << ">";
}
return result.str();
}
public:
static std::string format_name(std::string string)
{
format format = get_format();
std::regex r("([A-z0-9_]*):([A-z_:\\(\\)\\.<>\\s0-9\" ]*)");
// First we perform some checks
bool checks[5] = {false};
for(std::sregex_iterator i = std::sregex_iterator(string.begin(), string.end(), r);
i != std::sregex_iterator();
++i)
{
std::smatch m = *i;
if(m[1].str() == "algo")
{
checks[0] = true;
}
else if(m[1].str() == "subalgo")
{
checks[1] = true;
}
else if(m[1].str() == "input_type" || m[1].str() == "key_type"
|| m[1].str() == "value_type")
{
checks[2] = true;
}
else if(m[1].str() == "elements")
{
checks[3] = true;
}
}
std::string string_substitute = std::regex_replace(string, r, "");
checks[4] = string_substitute.find_first_not_of(" ,{}") == std::string::npos;
for(bool check_name_format : checks)
{
if(!check_name_format)
{
std::cout << "string_substitute = " << string_substitute << std::endl;
std::cout << "Benchmark name \"" << string
<< "\" not in the correct format (e.g. "
"{algo:reduce,subalgo:by_key} )"
<< std::endl;
exit(1);
}
}
// Now we generate the desired format
std::sregex_iterator matches = std::sregex_iterator(string.begin(), string.end(), r);
switch(format)
{
case format::json:
return matches_as_json(matches);
case format::human:
return matches_as_human(matches);
case format::txt:
return string;
}
return string;
}
};
namespace detail
{
void do_not_optimize(const void* ptr)
{
(void)ptr;
}
} // namespace detail
template <class T>
void do_not_optimize(const T& val)
{
detail::do_not_optimize(&val);
}
auto StatisticsSum
= [](const std::vector<double>& v) { return std::accumulate(v.begin(), v.end(), 0.0); };
double StatisticsMean(const std::vector<double>& v)
{
if(v.empty())
return 0.0;
return StatisticsSum(v) * (1.0 / static_cast<double>(v.size()));
}
double StatisticsMedian(const std::vector<double>& v)
{
if(v.size() < 3)
return StatisticsMean(v);
std::vector<double> copy(v);
auto center = copy.begin() + v.size() / 2;
std::nth_element(copy.begin(), center, copy.end());
// Did we have an odd number of samples? If yes, then center is the median.
// If not, then we are looking for the average between center and the value
// before. Instead of resorting, we just look for the max value before it,
// which is not necessarily the element immediately preceding `center` Since
// `copy` is only partially sorted by `nth_element`.
if(v.size() % 2 == 1)
return *center;
auto center2 = std::max_element(copy.begin(), center);
return (*center + *center2) / 2.0;
}
// Return the sum of the squares of this sample set
auto SumSquares = [](const std::vector<double>& v) {
return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
};
auto Sqr = [](const double dat) { return dat * dat; };
auto Sqrt = [](const double dat) {
// Avoid NaN due to imprecision in the calculations
if(dat < 0.0)
return 0.0;
return std::sqrt(dat);
};
double StatisticsStdDev(const std::vector<double>& v)
{
const auto mean = StatisticsMean(v);
if(v.empty())
return mean;
// Sample standard deviation is undefined for n = 1
if(v.size() == 1)
return 0.0;
const double avg_squares = SumSquares(v) * (1.0 / static_cast<double>(v.size()));
return Sqrt(static_cast<double>(v.size()) / (static_cast<double>(v.size()) - 1.0)
* (avg_squares - Sqr(mean)));
}
double StatisticsCV(const std::vector<double>& v)
{
if(v.size() < 2)
return 0.0;
const auto stddev = StatisticsStdDev(v);
const auto mean = StatisticsMean(v);
if(std::fpclassify(mean) == FP_ZERO)
return 0.0;
return stddev / mean;
}
inline const char* get_seed_message()
{
return "seed for input generation, either an unsigned integer value for determinisic results "
"or 'random' for different inputs for each repetition";
}
struct caching_allocator_t
{
using value_type = char;
caching_allocator_t() = default;
~caching_allocator_t()
{
free_all();
}
char* allocate(std::ptrdiff_t num_bytes)
{
value_type* result {};
auto free_block = free_blocks.find(num_bytes);
if(free_block != free_blocks.end())
{
result = free_block->second;
free_blocks.erase(free_block);
}
else
{
HIP_CHECK(hipMalloc(&result, num_bytes));
}
allocated_blocks.emplace(result, num_bytes);
return result;
}
void deallocate(value_type* ptr, size_t)
{
auto iter = allocated_blocks.find(ptr);
if(iter == allocated_blocks.end())
{
throw std::runtime_error("Memory was not allocated by this allocator");
}
std::ptrdiff_t num_bytes = iter->second;
allocated_blocks.erase(iter);
free_blocks.emplace(num_bytes, ptr);
}
private:
using FreeBlocksType = std::multimap<std::ptrdiff_t, value_type*>;
using AllocatedBlocksType = std::map<value_type*, std::ptrdiff_t>;
FreeBlocksType free_blocks;
AllocatedBlocksType allocated_blocks;
void free_all()
{
for(auto free_block : free_blocks)
{
HIP_CHECK(hipFree(free_block.second));
}
for(auto allocated_block : allocated_blocks)
{
HIP_CHECK(hipFree(allocated_block.first));
}
}
};
} // namespace bench_utils
#endif // ROCTHRUST_BENCHMARKS_BENCH_UTILS_BENCH_UTILS_HPP_
|