File: test_tuple_reduce.cpp

package info (click to toggle)
rocthrust 6.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,588 kB
  • sloc: cpp: 66,309; ansic: 34,184; python: 1,519; sh: 331; xml: 212; makefile: 115
file content (91 lines) | stat: -rw-r--r-- 2,913 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/*
 *  Copyright 2008-2013 NVIDIA Corporation
 *  Modifications Copyright© 2019 Advanced Micro Devices, Inc. All rights reserved.
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#include <thrust/sort.h>
#include <thrust/transform.h>
#include <thrust/tuple.h>

#include "test_header.hpp"

TESTS_DEFINE(TupleReduceTests, IntegerTestsParams);

struct SumTupleFunctor
{
    template <typename Tuple>
    __host__ __device__ Tuple operator()(const Tuple& lhs, const Tuple& rhs)
    {
        using thrust::get;

        return thrust::make_tuple(get<0>(lhs) + get<0>(rhs), get<1>(lhs) + get<1>(rhs));
    }
};

struct MakeTupleFunctor
{
    template <typename T1, typename T2>
    __host__ __device__ thrust::tuple<T1, T2> operator()(T1& lhs, T2& rhs)
    {
        return thrust::make_tuple(lhs, rhs);
    }
};

TYPED_TEST(TupleReduceTests, TestTupleReduce)
{
    using T = typename TestFixture::input_type;

    SCOPED_TRACE(testing::Message() << "with device_id= " << test::set_device_from_ctest());

    for(auto size : get_sizes())
    {
        SCOPED_TRACE(testing::Message() << "with size= " << size);

        for(auto seed : get_seeds())
        {
            SCOPED_TRACE(testing::Message() << "with seed= " << seed);

            thrust::host_vector<T> h_t1 = get_random_data<T>(
                size, std::numeric_limits<T>::min(), std::numeric_limits<T>::max(), seed);

            thrust::host_vector<T> h_t2 = get_random_data<T>(
                size,
                std::numeric_limits<T>::min(),
                std::numeric_limits<T>::max(),
                seed + seed_value_addition
            );

            // zip up the data
            thrust::host_vector<thrust::tuple<T, T>> h_tuples(size);
            thrust::transform(
                h_t1.begin(), h_t1.end(), h_t2.begin(), h_tuples.begin(), MakeTupleFunctor());

            // copy to device
            thrust::device_vector<thrust::tuple<T, T>> d_tuples = h_tuples;

            thrust::tuple<T, T> zero(0, 0);

            // sum on host
            thrust::tuple<T, T> h_result
                = thrust::reduce(h_tuples.begin(), h_tuples.end(), zero, SumTupleFunctor());

            // sum on device
            thrust::tuple<T, T> d_result
                = thrust::reduce(d_tuples.begin(), d_tuples.end(), zero, SumTupleFunctor());

            ASSERT_EQ_QUIET(h_result, d_result);
        }
    }
}