File: mixin.h

package info (click to toggle)
rocthrust 6.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,588 kB
  • sloc: cpp: 66,309; ansic: 34,184; python: 1,519; sh: 331; xml: 212; makefile: 115
file content (663 lines) | stat: -rw-r--r-- 22,296 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
#pragma once

#include <thrust/detail/config.h>

#if THRUST_CPP_DIALECT >= 2014

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/sequence.h>

#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/discard_iterator.h>

#include <thrust/type_traits/logical_metafunctions.h>

#include <unittest/unittest.h>
#include <unittest/util_async.h>

#include <tuple>
#include <type_traits>

// clang-format off

// This file contains a set of mix-in classes that define an algorithm
// definition for use with test_policy_overloads<algo_def>. The algorithm
// definition describes the details of a thrust::async algorithm invocation:
//
// - Input type and initialization
// - Output type and initialization (supports in-place, too)
// - Postfix arguments that define the algorithm's overload set
// - Abstracted invocation of the async algorithm
// - Abstracted invocation of a reference algorithm
// - Validation of async vs. reference output
// - A description string.
//
// This definition is used by test_policy_overloads to test each overload
// against a reference while injecting a variety of execution policies. This
// validates that each overload behaves correctly according to some reference.
//
// Since much of the algorithm definition is generic and may be reused in
// multiple tests with slight changes, a mix-in system is used to simplify
// the creation of algorithm definitions. The following namespace hierarchy is
// used to organize these generic components:
//
// * testing::async::mixin::
// ** ::input - Input types/values (device vectors, counting iterators, etc)
// ** ::output - Output types/values (device vectors, inplace device vectors,
//                                    discard iterators, etc)
// ** ::postfix_args - Algorithm specific overload sets
// ** ::invoke_reference - Algorithm specific reference invocation
// ** ::invoke_async - Algorithm specific async algo invocation
// ** ::compare_outputs - Compare output values.
//
// Each algorithm should define its own `mixins.h` header to declare algorithm
// specific mixins (e.g. postfix_args, invoke_reference, and invoke_async)
// in a testing::async::<algorithm_name>::mixins namespace structure.
//
// For example, the test.async.exclusive_scan.basic test uses the following
// algorithm definition from mix-ins:
//
// ```
//   #include <async/test_policy_overloads.h>
//   #include <async/mixin.h>
//   #include <async/exclusive_scan/mixin.h>
//   template <typename input_value_type,
//            typename output_value_type   = input_value_type,
//            typename initial_value_type  = input_value_type,
//            typename alternate_binary_op = thrust::maximum<>>
//   struct basic_invoker
//      : testing::async::mixin::input::device_vector<input_value_type>
//      , testing::async::mixin::output::device_vector<output_value_type>
//      , testing::async::exclusive_scan::mixin::postfix_args::
//          all_overloads<initial_value_type, alternate_binary_op>
//      , testing::async::exclusive_scan::mixin::invoke_reference::
//          host_synchronous<input_value_type, output_value_type>
//      , testing::async::exclusive_scan::mixin::invoke_async::basic
//      , testing::async::mixin::compare_outputs::assert_equal_quiet
//   {
//     static std::string description()
//     {
//       return "basic invocation with device vectors";
//     }
//   };
//
//   ...
//
//   testing::async::test_policy_overloads<basic_invoker<T>>::run(num_values);
// ```
//
// The basic_invoker class expands to something similar to the following:
//
// ```
//  template <typename input_value_type,
//            typename output_value_type   = input_value_type,
//            typename initial_value_type  = input_value_type,
//            typename alternate_binary_op = thrust::maximum<>>
//  struct basic_invoker
//  {
//  public:
//
//    static std::string description()
//    {
//      return "basic invocation with device vectors";
//    }
//
//    //-------------------------------------------------------------------------
//    // testing::async::mixin::input::device_vector
//    //
//    // input_type must provide idiomatic definitions of:
//    // - `using iterator = ...;`
//    // - `iterator begin() const { ... }`
//    // - `iterator end() const { ... }`
//    // - `size_t size() const { ... }`
//    using input_type = thrust::device_vector<input_value_type>;
//
//    // Generate an instance of the input:
//    static input_type generate_input(std::size_t num_values)
//    {
//      input_type input(num_values);
//      thrust::sequence(input.begin(), input.end(), 25, 3);
//      return input;
//    }
//
//    //-------------------------------------------------------------------------
//    // testing::async::mixin::output::device_vector
//    //
//    // output_type must provide idiomatic definitions of:
//    // - `using iterator = ...;`
//    // - `iterator begin() { ... }`
//    using output_type = thrust::device_vector<output_value_type>;
//
//    // Generate an instance of the output:
//    // Might be more complicated, eg. fancy iterators, etc
//    static output_type generate_output(std::size_t num_values)
//    {
//      return output_type(num_values);
//    }
//
//    //-------------------------------------------------------------------------
//    // testing::async::exclusive_scan::mixin::postfix_args::all_overloads
//    using postfix_args_type = std::tuple<   // List any extra arg overloads:
//      std::tuple<>,                                       // - no extra args
//      std::tuple<initial_value_type>,                     // - initial_value
//      std::tuple<initial_value_type, alternate_binary_op> // - initial_value, binary_op
//      >;
//
//    // Create instances of the extra arguments to use when invoking the
//    // algorithm:
//    static postfix_args_type generate_postfix_args()
//    {
//      return postfix_args_type{
//        std::tuple<>{},                            // no extra args
//        std::make_tuple(initial_value_type{42}),   // initial_value
//        // initial_value, binary_op:
//        std::make_tuple(initial_value_Type{57}, alternate_binary_op{})
//      };
//    }
//
//    //-------------------------------------------------------------------------
//    //
//    testing::async::exclusive_scan::mixin::invoke_reference::host_synchronous
//    //
//    // Invoke a reference implementation for a single overload as described by
//    // postfix_tuple. This tuple contains instances of any trailing arguments
//    // to pass to the algorithm. The tuple/index_sequence pattern is used to
//    // support a "no extra args" overload, since the parameter pack expansion
//    // will do exactly what we want in all cases.
//    template <typename PostfixArgTuple, std::size_t... PostfixArgIndices>
//    static void invoke_reference(input_type const &input,
//                                 output_type &output,
//                                 PostfixArgTuple &&postfix_tuple,
//                                 std::index_sequence<PostfixArgIndices...>)
//    {
//      // Create host versions of the input/output:
//      thrust::host_vector<input_value_type> host_input(input.cbegin(),
//                                                       input.cend());
//      thrust::host_vector<output_value_type> host_output(host_input.size());
//
//      // Run host synchronous algorithm to generate reference.
//      thrust::exclusive_scan(host_input.cbegin(),
//                             host_input.cend(),
//                             host_output.begin(),
//                             std::get<PostfixArgIndices>(
//                               THRUST_FWD(postfix_tuple))...);
//
//      // Copy back to device.
//      output = host_output;
//    }
//
//    //-------------------------------------------------------------------------
//    // testing::async::mixin::exclusive_scan::mixin::invoke_async::basic
//    //
//    // Invoke the async algorithm for a single overload as described by
//    // the prefix and postfix tuples. These tuples contains instances of any
//    // additional arguments to pass to the algorithm. The tuple/index_sequence
//    // pattern is used to support the "no extra args" overload, since the
//    // parameter pack expansion will do exactly what we want in all cases.
//    // Prefix args are included here (but not for invoke_reference) to allow
//    // the test framework to change the execution policy.
//    // This method must return an event or future.
//    template <typename PrefixArgTuple,
//              std::size_t... PrefixArgIndices,
//              typename PostfixArgTuple,
//              std::size_t... PostfixArgIndices>
//    static auto invoke_async(PrefixArgTuple &&prefix_tuple,
//                             std::index_sequence<PrefixArgIndices...>,
//                             input_type const &input,
//                             output_type &output,
//                             PostfixArgTuple &&postfix_tuple,
//                             std::index_sequence<PostfixArgIndices...>)
//    {
//      output.resize(input.size());
//      auto e = thrust::async::exclusive_scan(
//        std::get<PrefixArgIndices>(THRUST_FWD(prefix_tuple))...,
//        input.cbegin(),
//        input.cend(),
//        output.begin(),
//        std::get<PostfixArgIndices>(THRUST_FWD(postfix_tuple))...);
//      return e;
//    }
//
//    //-------------------------------------------------------------------------
//    // testing::async::mixin::compare_outputs::assert_equal_quiet
//    //
//    // Wait on and validate the event/future (usually with TEST_EVENT_WAIT /
//    // TEST_FUTURE_VALUE_RETRIEVAL), then check that the reference output
//    // matches the testing output.
//    template <typename EventType>
//    static void compare_outputs(EventType &e,
//                                output_type const &ref,
//                                output_type const &test)
//    {
//      TEST_EVENT_WAIT(e);
//      ASSERT_EQUAL_QUIET(ref, test);
//    }
// };
// ```
//
// Similar invokers with slight tweaks are used in other
// async/exclusive_scan/*.cu tests.

// clang-format on

namespace testing
{
namespace async
{
namespace mixin
{

//------------------------------------------------------------------------------
namespace input
{

template <typename value_type>
struct device_vector
{
  using input_type = thrust::device_vector<value_type>;

  static input_type generate_input(std::size_t num_values)
  {
    input_type input(num_values);
    thrust::sequence(input.begin(),
                     input.end(),
                     static_cast<value_type>(1),
                     static_cast<value_type>(1));
    return input;
  }
};

template <typename value_type>
struct counting_iterator_from_0
{
  struct input_type
  {
    using iterator = thrust::counting_iterator<value_type>;

    std::size_t num_values;

    iterator begin() const { return iterator{static_cast<value_type>(0)}; }
    iterator cbegin() const { return iterator{static_cast<value_type>(0)}; }

    iterator end() const { return iterator{static_cast<value_type>(num_values)}; }
    iterator cend() const { return iterator{static_cast<value_type>(num_values)}; }

    std::size_t size() const { return num_values; }
  };

  static input_type generate_input(std::size_t num_values)
  {
    return {num_values};
  }
};

template <typename value_type>
struct counting_iterator_from_1
{
  struct input_type
  {
    using iterator = thrust::counting_iterator<value_type>;

    std::size_t num_values;

    iterator begin() const { return iterator{static_cast<value_type>(1)}; }
    iterator cbegin() const { return iterator{static_cast<value_type>(1)}; }

    iterator end() const { return iterator{static_cast<value_type>(1 + num_values)}; }
    iterator cend() const { return iterator{static_cast<value_type>(1 + num_values)}; }

    std::size_t size() const { return num_values; }
  };

  static input_type generate_input(std::size_t num_values)
  {
    return {num_values};
  }
};

template <typename value_type>
struct constant_iterator_1
{
  struct input_type
  {
    using iterator = thrust::constant_iterator<value_type>;

    std::size_t num_values;

    iterator begin() const { return iterator{static_cast<value_type>(1)}; }
    iterator cbegin() const { return iterator{static_cast<value_type>(1)}; }

    iterator end() const
    {
      return iterator{static_cast<value_type>(1)} + num_values;
    }
    iterator cend() const
    {
      return iterator{static_cast<value_type>(1)} + num_values;
    }

    std::size_t size() const { return num_values; }
  };

  static input_type generate_input(std::size_t num_values)
  {
    return {num_values};
  }
};

} // namespace input

//------------------------------------------------------------------------------
namespace output
{

template <typename value_type>
struct device_vector
{
  using output_type = thrust::device_vector<value_type>;

  template <typename InputType>
  static output_type generate_output(std::size_t num_values,
                                     InputType& /* unused */)
  {
    return output_type(num_values);
  }
};

template <typename value_type>
struct device_vector_reuse_input
{
  using output_type = thrust::device_vector<value_type>&;

  template <typename InputType>
  static output_type generate_output(std::size_t /*num_values*/,
                                     InputType& input)
  {
    return input;
  }
};

struct discard_iterator
{
  struct output_type
  {
    using iterator = thrust::discard_iterator<>;

    iterator begin() const { return thrust::make_discard_iterator(); }
    iterator cbegin() const { return thrust::make_discard_iterator(); }
  };

  template <typename InputType>
  static output_type generate_output(std::size_t /* num_values */,
                                     InputType& /* input */)
  {
    return output_type{};
  }
};

} // namespace output

//------------------------------------------------------------------------------
namespace postfix_args
{
/* Defined per algorithm. Example:
 *
 * // Defines several overloads:
 * // algorithm([policy,] input, output) // no postfix args
 * // algorithm([policy,] input, output, initial_value)
 * // algorithm([policy,] input, output, initial_value, binary_op)
 * template <typename value_type,
 *           typename alternate_binary_op = thrust::maximum<>>
 * struct all_overloads
 * {
 *   using postfix_args_type = std::tuple<     // List any extra arg overloads:
 *     std::tuple<>,                               // - no extra args
 *     std::tuple<value_type>,                     // - initial_value
 *     std::tuple<value_type, alternate_binary_op> // - initial_value, binary_op
 *     >;
 *
 *   static postfix_args_type generate_postfix_args()
 *   {
 *     return postfix_args_type{
 *       std::tuple<>{},                            // no extra args
 *       std::make_tuple(initial_value_type{42}),   // initial_value
 *       // initial_value, binary_op:
 *       std::make_tuple(initial_value_Type{57}, alternate_binary_op{})
 *   }
 * };
 *
 */
}

//------------------------------------------------------------------------------
namespace invoke_reference
{

/* Defined per algorithm. Example:
 *
 * template <typename input_value_type,
 *           typename output_value_type = input_value_type>
 * struct host_synchronous
 * {
 *   template <typename InputType,
 *             typename OutputType,
 *             typename PostfixArgTuple,
 *             std::size_t... PostfixArgIndices>
 *   static void invoke_reference(InputType const& input,
 *                                OutputType& output,
 *                                PostfixArgTuple&& postfix_tuple,
 *                                std::index_sequence<PostfixArgIndices...>)
 *   {
 *     // Create host versions of the input/output:
 *     thrust::host_vector<input_value_type> host_input(input.cbegin(),
 *                                                      input.cend());
 *     thrust::host_vector<output_value_type> host_output(host_input.size());
 *
 *     // Run host synchronous algorithm to generate reference.
 *     // Be sure to call a backend that doesn't use the same underlying
 *     // implementation.
 *     thrust::exclusive_scan(host_input.cbegin(),
 *                            host_input.cend(),
 *                            host_output.begin(),
 *                            std::get<PostfixArgIndices>(
 *                              THRUST_FWD(postfix_tuple))...);
 *
 *     // Copy back to device.
 *     output = host_output;
 *   }
 * };
 *
 */

// Used to save time when testing unverifiable invocations (discard_iterators)
struct noop
{
  template <typename... Ts>
  static void invoke_reference(Ts&&...)
  {}
};

} // namespace invoke_reference

//------------------------------------------------------------------------------
namespace invoke_async
{

/* Defined per algorithm. Example:
 *
 * struct basic
 * {
 *   template <typename PrefixArgTuple,
 *             std::size_t... PrefixArgIndices,
 *             typename InputType,
 *             typename OutputType,
 *             typename PostfixArgTuple,
 *             std::size_t... PostfixArgIndices>
 *   static auto invoke_async(PrefixArgTuple&& prefix_tuple,
 *                            std::index_sequence<PrefixArgIndices...>,
 *                            InputType const& input,
 *                            OutputType& output,
 *                            PostfixArgTuple&& postfix_tuple,
 *                            std::index_sequence<PostfixArgIndices...>)
 *   {
 *     auto e = thrust::async::exclusive_scan(
 *       std::get<PrefixArgIndices>(THRUST_FWD(prefix_tuple))...,
 *       input.cbegin(),
 *       input.cend(),
 *       output.begin(),
 *       std::get<PostfixArgIndices>(THRUST_FWD(postfix_tuple))...);
 *     return e;
 *   }
 * };
 */

} // namespace invoke_async

//------------------------------------------------------------------------------
namespace compare_outputs
{

namespace detail
{

void basic_event_validation(thrust::device_event& e)
{
  TEST_EVENT_WAIT(e);
}

template <typename T>
void basic_event_validation(thrust::device_future<T>& f)
{
  TEST_FUTURE_VALUE_RETRIEVAL(f);
}

} // namespace detail

struct assert_equal
{
  template <typename EventType, typename OutputType>
  static void compare_outputs(EventType& e,
                              OutputType const& ref,
                              OutputType const& test)
  {
    detail::basic_event_validation(e);
    ASSERT_EQUAL(ref, test);
  }
};

struct assert_almost_equal
{
  template <typename EventType, typename OutputType>
  static void compare_outputs(EventType& e,
                              OutputType const& ref,
                              OutputType const& test)
  {
    detail::basic_event_validation(e);
    ASSERT_ALMOST_EQUAL(ref, test);
  }
};

// Does an 'almost_equal' comparison for floating point types. Since fp
// addition is non-associative, this is sometimes necessary.
struct assert_almost_equal_if_fp
{
private:
  template <typename EventType, typename OutputType>
  static void compare_outputs_impl(EventType& e,
                                   OutputType const& ref,
                                   OutputType const& test,
                                   std::false_type /* is_floating_point */)
  {
    detail::basic_event_validation(e);
    ASSERT_EQUAL(ref, test);
  }

  template <typename EventType, typename OutputType>
  static void compare_outputs_impl(EventType& e,
                                   OutputType const& ref,
                                   OutputType const& test,
                                   std::true_type /* is_floating_point */)
  {
    detail::basic_event_validation(e);
    ASSERT_ALMOST_EQUAL(ref, test);
  }

public:
  template <typename EventType, typename OutputType>
  static void compare_outputs(EventType& e,
                              OutputType const& ref,
                              OutputType const& test)
  {
    using value_type = typename OutputType::value_type;
    compare_outputs_impl(e, ref, test, std::is_floating_point<value_type>{});
  }
};

struct assert_equal_quiet
{
  template <typename EventType, typename OutputType>
  static void compare_outputs(EventType& e,
                              OutputType const& ref,
                              OutputType const& test)
  {
    detail::basic_event_validation(e);
    ASSERT_EQUAL_QUIET(ref, test);
  }
};

// Does an 'almost_equal' comparison for floating point types, since fp
// addition is non-associative
struct assert_almost_equal_if_fp_quiet
{
private:
  template <typename EventType, typename OutputType>
  static void compare_outputs_impl(EventType& e,
                                   OutputType const& ref,
                                   OutputType const& test,
                                   std::false_type /* is_floating_point */)
  {
    detail::basic_event_validation(e);
    ASSERT_EQUAL_QUIET(ref, test);
  }

  template <typename EventType, typename OutputType>
  static void compare_outputs_impl(EventType& e,
                                   OutputType const& ref,
                                   OutputType const& test,
                                   std::true_type /* is_floating_point */)
  {
    detail::basic_event_validation(e);
    ASSERT_ALMOST_EQUAL(ref, test);
  }

public:
  template <typename EventType, typename OutputType>
  static void compare_outputs(EventType& e,
                              OutputType const& ref,
                              OutputType const& test)
  {
    using value_type = typename OutputType::value_type;
    compare_outputs_impl(e, ref, test, std::is_floating_point<value_type>{});
  }
};

// Used to save time when testing unverifiable invocations (discard_iterators).
// Just does basic validation of the future/event.
struct noop
{
  template <typename EventType, typename... Ts>
  static void compare_outputs(EventType &e, Ts&&...)
  {
    detail::basic_event_validation(e);
  }
};

} // namespace compare_outputs

} // namespace mixin
} // namespace async
} // namespace testing

#endif // C++14