1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*
* Copyright 2008-2013 NVIDIA Corporation
* Modifications Copyright© 2019-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <unittest/unittest.h>
#include <thrust/sequence.h>
#include <thrust/iterator/discard_iterator.h>
#include <thrust/iterator/retag.h>
template<typename ForwardIterator>
THRUST_HOST_DEVICE
void sequence(my_system &system, ForwardIterator, ForwardIterator)
{
system.validate_dispatch();
}
void TestSequenceDispatchExplicit()
{
thrust::device_vector<int> vec(1);
my_system sys(0);
thrust::sequence(sys, vec.begin(), vec.end());
ASSERT_EQUAL(true, sys.is_valid());
}
DECLARE_UNITTEST(TestSequenceDispatchExplicit);
template<typename ForwardIterator>
THRUST_HOST_DEVICE
void sequence(my_tag, ForwardIterator first, ForwardIterator)
{
*first = 13;
}
void TestSequenceDispatchImplicit()
{
thrust::device_vector<int> vec(1);
thrust::sequence(thrust::retag<my_tag>(vec.begin()),
thrust::retag<my_tag>(vec.end()));
ASSERT_EQUAL(13, vec.front());
}
DECLARE_UNITTEST(TestSequenceDispatchImplicit);
template <class Vector>
void TestSequenceSimple()
{
using value_type = typename Vector::value_type;
Vector v(5);
thrust::sequence(v.begin(), v.end());
ASSERT_EQUAL(v[0], 0);
ASSERT_EQUAL(v[1], 1);
ASSERT_EQUAL(v[2], 2);
ASSERT_EQUAL(v[3], 3);
ASSERT_EQUAL(v[4], 4);
thrust::sequence(v.begin(), v.end(), value_type{10});
ASSERT_EQUAL(v[0], 10);
ASSERT_EQUAL(v[1], 11);
ASSERT_EQUAL(v[2], 12);
ASSERT_EQUAL(v[3], 13);
ASSERT_EQUAL(v[4], 14);
thrust::sequence(v.begin(), v.end(), value_type{10}, value_type{2});
ASSERT_EQUAL(v[0], 10);
ASSERT_EQUAL(v[1], 12);
ASSERT_EQUAL(v[2], 14);
ASSERT_EQUAL(v[3], 16);
ASSERT_EQUAL(v[4], 18);
}
DECLARE_VECTOR_UNITTEST(TestSequenceSimple);
template <typename T>
void TestSequence(size_t n)
{
thrust::host_vector<T> h_data(n);
thrust::device_vector<T> d_data(n);
thrust::sequence(h_data.begin(), h_data.end());
thrust::sequence(d_data.begin(), d_data.end());
ASSERT_EQUAL(h_data, d_data);
thrust::sequence(h_data.begin(), h_data.end(), T(10));
thrust::sequence(d_data.begin(), d_data.end(), T(10));
ASSERT_EQUAL(h_data, d_data);
thrust::sequence(h_data.begin(), h_data.end(), T(10), T(2));
thrust::sequence(d_data.begin(), d_data.end(), T(10), T(2));
ASSERT_EQUAL(h_data, d_data);
thrust::sequence(h_data.begin(), h_data.end(), T(10), T(2));
thrust::sequence(d_data.begin(), d_data.end(), T(10), T(2));
ASSERT_EQUAL(h_data, d_data);
}
DECLARE_VARIABLE_UNITTEST(TestSequence);
template <typename T>
void TestSequenceToDiscardIterator(size_t n)
{
thrust::host_vector<T> h_data(n);
thrust::device_vector<T> d_data(n);
thrust::sequence(thrust::discard_iterator<thrust::device_system_tag>(),
thrust::discard_iterator<thrust::device_system_tag>(13),
T(10),
T(2));
// nothing to check -- just make sure it compiles
}
DECLARE_VARIABLE_UNITTEST(TestSequenceToDiscardIterator);
void TestSequenceComplex()
{
thrust::device_vector<thrust::complex<double> > m(64);
thrust::sequence(m.begin(), m.end());
}
DECLARE_UNITTEST(TestSequenceComplex);
// A class that doesnt accept conversion from size_t but can be multiplied by a scalar
struct Vector
{
Vector() = default;
// Explicitly disable construction from size_t
Vector(std::size_t) = delete;
THRUST_HOST_DEVICE Vector(int x_, int y_) : x{x_}, y{y_} {}
Vector(const Vector&) = default;
Vector &operator=(const Vector&) = default;
int x, y;
};
// Vector-Vector addition
THRUST_HOST_DEVICE Vector operator+(const Vector a, const Vector b)
{
return Vector{a.x + b.x, a.y + b.y};
}
// Vector-Scalar Multiplication
// Multiplication by std::size_t is required by thrust::sequence.
THRUST_HOST_DEVICE Vector operator*(const std::size_t a, const Vector b)
{
return Vector{static_cast<int>(a) * b.x, static_cast<int>(a) * b.y};
}
THRUST_HOST_DEVICE Vector operator*(const Vector b, const std::size_t a)
{
return Vector{static_cast<int>(a) * b.x, static_cast<int>(a) * b.y};
}
void TestSequenceNoSizeTConversion()
{
thrust::device_vector<Vector> m(64);
thrust::sequence(m.begin(), m.end(), ::Vector{0, 0}, ::Vector{1, 2});
for (std::size_t i = 0; i < m.size(); ++i)
{
const ::Vector v = m[i];
ASSERT_EQUAL(static_cast<std::size_t>(v.x), i);
ASSERT_EQUAL(static_cast<std::size_t>(v.y), 2 * i);
}
}
DECLARE_UNITTEST(TestSequenceNoSizeTConversion);
|