1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#include <ros/ros.h>
#include <gtest/gtest.h>
#include <camera_calibration_parsers/parse.h>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/highgui/highgui.hpp>
#include <image_transport/image_transport.h>
#include <sensor_msgs/CameraInfo.h>
#include <sensor_msgs/distortion_models.h>
class ImageProcRectifyTest : public testing::Test
{
protected:
virtual void SetUp()
{
// Determine topic names
std::string camera_ns = nh_.resolveName("camera") + "/";
if (camera_ns == "/camera")
throw "Must remap 'camera' to the camera namespace.";
topic_raw_ = camera_ns + "image_raw";
topic_mono_ = camera_ns + "image_mono";
topic_rect_ = camera_ns + "image_rect";
topic_color_ = camera_ns + "image_color";
topic_rect_color_ = camera_ns + "image_rect_color";
// Taken from vision_opencv/image_geometry/test/utest.cpp
double D[] = {-0.363528858080088, 0.16117037733986861, -8.1109585007538829e-05, -0.00044776712298447841, 0.0};
double K[] = {430.15433020105519, 0.0, 311.71339830549732,
0.0, 430.60920415473657, 221.06824942698509,
0.0, 0.0, 1.0};
double R[] = {0.99806560714807102, 0.0068562422224214027, 0.061790256276695904,
-0.0067522959054715113, 0.99997541519165112, -0.0018909025066874664,
-0.061801701660692349, 0.0014700186639396652, 0.99808736527268516};
double P[] = {295.53402059708782, 0.0, 285.55760765075684, 0.0,
0.0, 295.53402059708782, 223.29617881774902, 0.0,
0.0, 0.0, 1.0, 0.0};
cam_info_.header.frame_id = "tf_frame";
cam_info_.height = 480;
cam_info_.width = 640;
// No ROI
cam_info_.D.resize(5);
std::copy(D, D+5, cam_info_.D.begin());
std::copy(K, K+9, cam_info_.K.begin());
std::copy(R, R+9, cam_info_.R.begin());
std::copy(P, P+12, cam_info_.P.begin());
cam_info_.distortion_model = sensor_msgs::distortion_models::PLUMB_BOB;
distorted_image_ = cv::Mat(cv::Size(cam_info_.width, cam_info_.height), CV_8UC3);
// draw a grid
const cv::Scalar color = cv::Scalar(255, 255, 255);
// draw the lines thick so the proportion of error due to
// interpolation is reduced
const int thickness = 7;
const int type = 8;
for (size_t y = 0; y <= cam_info_.height; y += cam_info_.height/10)
{
cv::line(distorted_image_,
cv::Point(0, y), cv::Point(cam_info_.width, y),
color, type, thickness);
}
for (size_t x = 0; x <= cam_info_.width; x += cam_info_.width/10)
{
// draw the lines thick so the prorportion of interpolation error is reduced
cv::line(distorted_image_,
cv::Point(x, 0), cv::Point(x, cam_info_.height),
color, type, thickness);
}
raw_image_ = cv_bridge::CvImage(std_msgs::Header(), "bgr8",
distorted_image_).toImageMsg();
// Create raw camera subscriber and publisher
image_transport::ImageTransport it(nh_);
cam_pub_ = it.advertiseCamera(topic_raw_, 1);
}
ros::NodeHandle nh_;
std::string topic_raw_;
std::string topic_mono_;
std::string topic_rect_;
std::string topic_color_;
std::string topic_rect_color_;
cv::Mat distorted_image_;
sensor_msgs::ImagePtr raw_image_;
bool has_new_image_;
cv::Mat received_image_;
sensor_msgs::CameraInfo cam_info_;
image_transport::CameraPublisher cam_pub_;
image_transport::Subscriber cam_sub_;
public:
void imageCallback(const sensor_msgs::ImageConstPtr& msg)
{
cv_bridge::CvImageConstPtr cv_ptr;
try
{
cv_ptr = cv_bridge::toCvShare(msg, sensor_msgs::image_encodings::BGR8);
}
catch (cv_bridge::Exception& e)
{
ROS_FATAL("cv_bridge exception: %s", e.what());
return;
}
received_image_ = cv_ptr->image.clone();
has_new_image_ = true;
}
void publishRaw()
{
has_new_image_ = false;
cam_pub_.publish(*raw_image_, cam_info_);
}
};
TEST_F(ImageProcRectifyTest, rectifyTest)
{
ROS_INFO("In test. Subscribing.");
image_transport::ImageTransport it(nh_);
cam_sub_ = it.subscribe(topic_rect_, 1, &ImageProcRectifyTest::imageCallback,
dynamic_cast<ImageProcRectifyTest*>(this));
// Wait for image_proc to be operational
bool wait_for_topic = true;
while (wait_for_topic)
{
// @todo this fails without the additional 0.5 second sleep after the
// publisher comes online, which means on a slower or more heavily
// loaded system it may take longer than 0.5 seconds, and the test
// would hang until the timeout is reached and fail.
if (cam_sub_.getNumPublishers() > 0)
wait_for_topic = false;
ros::Duration(0.5).sleep();
}
// All the tests are the same as from
// vision_opencv/image_geometry/test/utest.cpp
// default cam info
// Just making this number up, maybe ought to be larger
// since a completely different image would be on the order of
// width * height * 255 = 78e6
const double diff_threshold = 10000.0;
double error;
// use original cam_info
publishRaw();
while (!has_new_image_)
{
ros::spinOnce();
ros::Duration(0.5).sleep();
}
// Test that rectified image is sufficiently different
// using default distortion
error = cv::norm(distorted_image_, received_image_, cv::NORM_L1);
// Just making this number up, maybe ought to be larger
EXPECT_GT(error, diff_threshold);
// Test that rectified image is sufficiently different
// using default distortion but with first element zeroed
// out.
sensor_msgs::CameraInfo cam_info_orig = cam_info_;
cam_info_.D[0] = 0.0;
publishRaw();
while (!has_new_image_)
{
ros::spinOnce();
ros::Duration(0.5).sleep();
}
error = cv::norm(distorted_image_, received_image_, cv::NORM_L1);
EXPECT_GT(error, diff_threshold);
// Test that rectified image is the same using zero distortion
cam_info_.D.assign(cam_info_.D.size(), 0);
publishRaw();
while (!has_new_image_)
{
ros::spinOnce();
ros::Duration(0.5).sleep();
}
error = cv::norm(distorted_image_, received_image_, cv::NORM_L1);
EXPECT_EQ(error, 0);
// Test that rectified image is the same using empty distortion
cam_info_.D.clear();
publishRaw();
while (!has_new_image_)
{
ros::spinOnce();
ros::Duration(0.5).sleep();
}
error = cv::norm(distorted_image_, received_image_, cv::NORM_L1);
EXPECT_EQ(error, 0);
// restore the original cam_info for other tests added in the future
cam_info_ = cam_info_orig;
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "image_proc_test_rectify");
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|