File: FastVector.cxx

package info (click to toggle)
rosegarden 1%3A1.4.0-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 23,188 kB
  • ctags: 15,707
  • sloc: cpp: 148,264; xml: 4,687; python: 1,946; makefile: 1,146; perl: 1,033; sh: 587; ansic: 337; ruby: 173
file content (294 lines) | stat: -rw-r--r-- 7,588 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// -*- c-file-style:  "bsd" -*-
#ifndef _FAST_VECTOR_CXX_
#define _FAST_VECTOR_CXX_

#include "FastVector.h"
#include <cstdlib> /* for malloc, realloc, free */
#include <cstring> /* for memmove */

template <class T>
void *operator new(size_t, FastVector<T> *, void *space)
{
    return space;
}

template <class T>
FastVector<T>::FastVector(const FastVector<T> &l) :
    m_items(0), m_count(0), m_gapStart(-1),
    m_gapLength(0), m_size(0)
{
    resize(l.size());
    for (size_type i = 0; i < l.size(); ++i) push_back(l.at(i));
}

template <class T>
FastVector<T>::~FastVector()
{
    clear();
    vectorDestroyed();
    free((void *)m_items);
}

template <class T>
FastVector<T>& FastVector<T>::operator=(const FastVector<T>& l)
{
    if (&l == this) return *this;

    if (m_count > 0) elementsRemoved(0, m_count);
    clear();

    if (l.size() >= m_size) resize(l.size());
    for (size_type i = 0; i < l.size(); ++i) push_back(l.at(i));
    if (m_count > 0) elementsAdded(0, m_count);

    return *this;
}

template <class T>
void FastVector<T>::moveGapTo(size_type index)
{
    // shift some elements left or right so as to line the gap up with
    // the prospective insertion or deletion point.

    assert(m_gapStart >= 0);

    if (m_gapStart < index) {
	// need to move some stuff left to fill the gap
	memmove(&m_items[m_gapStart],
		&m_items[m_gapStart + m_gapLength],
		(index - m_gapStart) * sizeof(T));
	
    } else if (m_gapStart > index) {
	// need to move some stuff right to fill the gap
	memmove(&m_items[index + m_gapLength], &m_items[index],
		(m_gapStart - index) * sizeof(T));
    }

    m_gapStart = index;
}

template <class T>
void FastVector<T>::resize(size_type needed)
{
    size_type newSize = bestNewCount(needed, sizeof(T));

    if (m_items) {
	m_items = (T *)realloc(m_items, newSize * sizeof(T));
    } else {
	m_items = (T *)malloc(newSize * sizeof(T));
    }

    m_size = newSize;
}

template <class T>
void FastVector<T>::remove(size_type index, bool suppressCB)
{
    assert(index >= 0 && index < m_count);
    if (!suppressCB) elementsRemoved(index, 1);

    if (index == m_count - 1) {
	// shorten the list without disturbing an existing gap, unless
	// the item we're taking was the only one after the gap
	m_items[externalToInternal(index)].T::~T();
	if (m_gapStart == index) m_gapStart = -1;
    } else {
	if (m_gapStart >= 0) {
	    // moveGapTo shifts the gap around ready for insertion.
	    // It actually moves the indexed object out of the way, so
	    // that it's now at the end of the gap.  We have to cope.
	    moveGapTo(index);
	    m_items[m_gapStart + m_gapLength].T::~T();
	    ++m_gapLength;
	} else {		// no gap, make one
	    m_gapStart = index;
	    m_items[m_gapStart].T::~T();
	    m_gapLength = 1;
	}
    }

    if (--m_count == 0) m_gapStart = -1;
    if (m_count < m_size/3 && m_size > minSize()) {
	closeGap();
	resize(m_count);	// recover some memory
    }
}

template <class T>
void FastVector<T>::insert(size_type index, const T&t)
{
    assert(index >= 0 && index <= m_count);

    if (index == m_count) {

	// Appending.  No need to disturb the gap, if there is one --
	// we'd rather waste a bit of memory than bother closing it up

	if (externalToInternal(m_count) >= m_size || !m_items) {
	    resize(m_size + 1);
	}

	(void) new (this, &m_items[externalToInternal(index)]) T(t);

    } else if (m_gapStart < 0) {

	// Inserting somewhere, when there's no gap we can use.

	if (m_count >= m_size) resize(m_size + 1);

	// I think it's going to be more common to insert elements
	// at the same point repeatedly than at random points.
	// So, if we can make a gap here ready for more insertions
	// *without* exceeding the m_size limit (i.e. if we've got
	// slack left over from a previous gap), then let's.  But
	// not too much -- ideally we'd like some space left for
	// appending.  Say half.

	if (m_count < m_size-2) {
	    m_gapStart = index+1;
	    m_gapLength = (m_size - m_count) / 2;
	    memmove(&m_items[m_gapStart + m_gapLength], &m_items[index],
		    (m_count - index) * sizeof(T));
	} else {
	    memmove(&m_items[index + 1], &m_items[index],
		    (m_count - index) * sizeof(T));
	}

	(void) new (this, &m_items[index]) T(t);

    } else {
	
	// There's already a gap, all we have to do is move it (with
	// no need to resize)

	if (index != m_gapStart) moveGapTo(index);
	(void) new (this, &m_items[m_gapStart]) T(t);
	if (--m_gapLength == 0) m_gapStart = -1;
	else ++m_gapStart;
    }

    ++m_count;

    elementsAdded(index, 1);
}

template <class T>
template <class InputIterator>
FastVector<T>::iterator FastVector<T>::insert
(const FastVector<T>::iterator &p, InputIterator &i, InputIterator &j) {
    size_type n = p.m_i;
    while (i != j) {
	--j;
	insert(n, *j);
    }
    return begin() + n;
}

template <class T>
FastVector<T>::iterator FastVector<T>::erase
(const FastVector<T>::iterator &i, const FastVector<T>::iterator &j)
{
    assert(i.m_v == this && j.m_v == this && j.m_i >= i.m_i);

    size_type ip = ::std::distance(begin(), i);
    size_type n = ::std::distance(i, j);
    elementsRemoved(ip, n);

    for (size_type k = i.m_i; k < j.m_i; ++k) remove(i.m_i, true);
    return FastVector<T>::iterator(this, i.m_i);
}

template <class T>
void FastVector<T>::clear()
{
    // Use erase(), which uses remove() -- a subclass that overrides
    // remove() will not want to have to provide this method as well
    erase(begin(), end());
}

template <class T>
T* FastVector<T>::array(size_type index, size_type count)
{
    assert(index >= 0 && count > 0 && index + count <= m_count);

    if (m_gapStart < 0 || index + count <= m_gapStart) {
	return m_items + index;
    } else if (index >= m_gapStart) {
	return m_items + index + m_gapLength;
    } else {
	closeGap();
	return m_items + index;
    }
}

template <class T>
bool FastVector<T>::operator==(const FastVector<T> &v) const
{
    if (size() != v.size()) return false;
    for (size_type i = 0; i < m_count; ++i) {
	if (at(i) != v.at(i)) return false;
    }
    return true;
}

template <class T>
void FastVector<T>::registerIterator(iterator *const i)
{
    m_registeredIterators.push_back(i);
}

template <class T>
void FastVector<T>::unregisterIterator(iterator *const i)
{
    for (IteratorSet::iterator itr = m_registeredIterators.end();
	 itr != m_registeredIterators.begin(); ) {
	--itr;
	if (*itr == i) {
	    m_registeredIterators.erase(itr);
	    return;
	}
    }

    cerr << "Warning: duplicate unregistration of FastVector "
	 << "iterator" << endl;
}

template <class T>
void FastVector<T>::elementsAdded(size_type i, size_type n) const
{
    IteratorSet::const_iterator itr(m_registeredIterators.begin());
    while (itr != m_registeredIterators.end()) {
	if (*itr) (*itr)->elementsAddedCB(i, n);
	++itr;
    }
}

template <class T>
void FastVector<T>::elementsRemoved(size_type i, size_type n) const
{
    IteratorSet::const_iterator itr(m_registeredIterators.begin());
    while (itr != m_registeredIterators.end()) {
	if (*itr) (*itr)->elementsRemovedCB(i, n);
	++itr;
    }
}

template <class T>
void FastVector<T>::vectorDestroyed()
{
    if (m_registeredIterators.size() > 0) {
	cerr << "Warning: FastVector destroyed with "
	     << m_registeredIterators.size() << " iterators still registered"
	     << endl;
	IteratorSet::iterator itr(m_registeredIterators.begin());
	while (itr != m_registeredIterators.end()) {
	    if (*itr) (*itr)->vectorDestroyedCB();
	    ++itr;
	}
    }
    m_registeredIterators.erase(m_registeredIterators.begin(),
				m_registeredIterators.end());
}

#endif