File: digest_openssl.c

package info (click to toggle)
rpm 4.14.2.1+dfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 17,592 kB
  • sloc: ansic: 68,414; sh: 31,370; makefile: 884; cpp: 569; python: 485; perl: 222; sed: 16
file content (839 lines) | stat: -rw-r--r-- 17,281 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
#include "system.h"

#include <openssl/evp.h>
#include <openssl/rsa.h>
#include <openssl/dsa.h>
#include <rpm/rpmpgp.h>

#include "rpmio/digest.h"


/* Compatibility functions for OpenSSL 1.0.2 */

#ifndef HAVE_EVP_MD_CTX_NEW
# define EVP_MD_CTX_new EVP_MD_CTX_create
# define EVP_MD_CTX_free EVP_MD_CTX_destroy
#endif

#ifndef HAVE_RSA_SET0_KEY
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d);
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
{
    if (!r) return 0;

    if (n) {
        r->n = n;
    }

    if (e) {
        r->e = e;
    }

    if (d) {
        r->d = d;
    }

    return 1;
}
#endif /* HAVE_RSA_SET0_KEY */

#ifndef HAVE_DSA_SET0_KEY
int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key);

int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key)
{
    if (!d) return 0;

    if (pub_key) {
        d->pub_key = pub_key;
    }

    if (priv_key) {
        d->priv_key = priv_key;
    }

    return 1;
}
#endif /* HAVE_DSA_SET0_KEY */

#ifndef HAVE_DSA_SET0_PQG
int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g);

int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g)
{
    if (!d) return 0;

    if (p) {
        d->p = p;
    }

    if (q) {
        d->q = q;
    }

    if (g) {
        d->g = g;
    }

    return 1;
}
#endif /* HAVE_DSA_SET0_PQG */

#ifndef HAVE_DSA_SIG_SET0
int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s);

int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s)
{
    if (!sig) return 0;

    if (r) {
        sig->r = r;
    }

    if (s) {
        sig->s = s;
    }

    return 1;
}
#endif /* HAVE_DSA_SIG_SET0 */

#ifndef HAVE_BN2BINPAD
static int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
{
    int i;

    i = BN_num_bytes(a);
    if (tolen < i)
        return -1;

    /* Add leading zeroes if necessary */
    if (tolen > i) {
        memset(to, 0, tolen - i);
        to += tolen - i;
    }

    BN_bn2bin(a, to);

    return tolen;
}
#endif /* HAVE_BN2BINPAD */

struct DIGEST_CTX_s {
    rpmDigestFlags flags;	/*!< Bit(s) to control digest operation. */
    int algo;			/*!< Used hash algorithm */

    EVP_MD_CTX *md_ctx; /* Digest context (opaque) */

};

/****************************  init   ************************************/

int rpmInitCrypto(void) {
    return 0;
}

int rpmFreeCrypto(void) {
    return 0;
}

/****************************  digest ************************************/

DIGEST_CTX rpmDigestDup(DIGEST_CTX octx)
{
    if (!octx) return NULL;

    DIGEST_CTX nctx = NULL;
    nctx = xcalloc(1, sizeof(*nctx));

    nctx->flags = octx->flags;
    nctx->algo = octx->algo;
    nctx->md_ctx = EVP_MD_CTX_new();
    if (!nctx->md_ctx) {
        free(nctx);
        return NULL;
    }

    if (!EVP_MD_CTX_copy(nctx->md_ctx, octx->md_ctx)) {
        free(nctx);
        return NULL;
    }

    return nctx;
}

static const EVP_MD *getEVPMD(int hashalgo)
{
    switch (hashalgo) {

    case PGPHASHALGO_MD5:
        return EVP_md5();

    case PGPHASHALGO_SHA1:
        return EVP_sha1();

    case PGPHASHALGO_RIPEMD160:
        return EVP_ripemd160();

    case PGPHASHALGO_MD2:
        return EVP_md2();

    case PGPHASHALGO_SHA256:
        return EVP_sha256();

    case PGPHASHALGO_SHA384:
        return EVP_sha384();

    case PGPHASHALGO_SHA512:
        return EVP_sha512();

    case PGPHASHALGO_SHA224:
        return EVP_sha224();

    default:
        return EVP_md_null();
    }
}

size_t rpmDigestLength(int hashalgo)
{
    return EVP_MD_size(getEVPMD(hashalgo));
}

DIGEST_CTX rpmDigestInit(int hashalgo, rpmDigestFlags flags)
{
    DIGEST_CTX ctx = xcalloc(1, sizeof(*ctx));

    ctx->md_ctx = EVP_MD_CTX_new();
    if (!ctx->md_ctx) {
        free(ctx);
        return NULL;
    }

    const EVP_MD *md = getEVPMD(hashalgo);
    if (md == EVP_md_null()) {
        free(ctx->md_ctx);
        free(ctx);
        return NULL;
    }

    ctx->algo = hashalgo;
    ctx->flags = flags;
    if (!EVP_DigestInit_ex(ctx->md_ctx, md, NULL)) {
        free(ctx->md_ctx);
        free(ctx);
        return NULL;
    }

    return ctx;
}

int rpmDigestUpdate(DIGEST_CTX ctx, const void *data, size_t len)
{
    if (ctx == NULL) return -1;

    EVP_DigestUpdate(ctx->md_ctx, data, len);

    return 0;
}

int rpmDigestFinal(DIGEST_CTX ctx, void ** datap, size_t *lenp, int asAscii)
{
    int ret;
    unsigned char *digest = NULL;
    unsigned int digestlen;

    if (ctx == NULL) return -1;

    digestlen = EVP_MD_CTX_size(ctx->md_ctx);
    digest = xcalloc(digestlen, sizeof(*digest));

    ret = EVP_DigestFinal_ex(ctx->md_ctx, digest, &digestlen);
    if (ret != 1) goto done;

    if (!asAscii) {
        /* Raw data requested */
        if (lenp) *lenp = digestlen;
        if (datap) {
            *datap = digest;
            digest = NULL;
        }
    }

    else {
        /* ASCII requested */
        if (lenp) *lenp = (2*digestlen) + 1;
        if (datap) {
            const uint8_t * s = (const uint8_t *) digest;
            *datap = pgpHexStr(s, digestlen);
        }
    }

    ret = 1;

done:
    if (digest) {
        /* Zero the digest, just in case it's sensitive */
        memset(digest, 0, digestlen);
        free(digest);
    }

    EVP_MD_CTX_free(ctx->md_ctx);
    free(ctx);

    if (ret != 1) {
        return -1;
    }

    return 0;
}


/****************************** RSA **************************************/

/* Key */

struct pgpDigKeyRSA_s {
    size_t nbytes; /* Size of modulus */

    BIGNUM *n; /* Common Modulus */
    BIGNUM *e; /* Public Exponent */

    EVP_PKEY *evp_pkey; /* Fully constructed key */
};

static int constructRSASigningKey(struct pgpDigKeyRSA_s *key)
{
    if (key->evp_pkey) {
        /* We've already constructed it, so just reuse it */
        return 1;
    }

    /* Create the RSA key */
    RSA *rsa = RSA_new();
    if (!rsa) return 0;

    if (!RSA_set0_key(rsa, key->n, key->e, NULL)) {
        RSA_free(rsa);
        return 0;
    }

    /* Create an EVP_PKEY container to abstract the key-type. */
    key->evp_pkey = EVP_PKEY_new();
    if (!key->evp_pkey) {
        RSA_free(rsa);
        return 0;
    }

    /* Assign the RSA key to the EVP_PKEY structure.
       This will take over memory management of the RSA key */
    if (!EVP_PKEY_assign_RSA(key->evp_pkey, rsa)) {
        EVP_PKEY_free(key->evp_pkey);
        key->evp_pkey = NULL;
        RSA_free(rsa);
    }

    return 1;
}

static int pgpSetKeyMpiRSA(pgpDigAlg pgpkey, int num, const uint8_t *p)
{
    size_t mlen = pgpMpiLen(p) - 2;
    struct pgpDigKeyRSA_s *key = pgpkey->data;

    if (!key) {
        key = pgpkey->data = xcalloc(1, sizeof(*key));
    }

    switch (num) {
    case 0:
        /* Modulus */
        if (key->n) {
            /* This should only ever happen once per key */
            return 1;
        }

        key->nbytes = mlen;
        /* Create a BIGNUM from the pointer.
           Note: this assumes big-endian data as required by PGP */
        key->n = BN_bin2bn(p+2, mlen, NULL);
        if (!key->n) return 1;
        break;

    case 1:
        /* Exponent */
        if (key->e) {
            /* This should only ever happen once per key */
            return 1;
        }

        /* Create a BIGNUM from the pointer.
           Note: this assumes big-endian data as required by PGP */
        key->e = BN_bin2bn(p+2, mlen, NULL);
        if (!key->e) return 1;
        break;
    }

    return 0;
}

static void pgpFreeKeyRSA(pgpDigAlg pgpkey)
{
    struct pgpDigKeyRSA_s *key = pgpkey->data;
    if (key) {
        if (key->evp_pkey) {
            EVP_PKEY_free(key->evp_pkey);
        } else {
            /* If key->evp_pkey was constructed,
             * the memory management of these BNs
             * are freed with it. */
            BN_clear_free(key->n);
            BN_clear_free(key->e);
        }

        free(key);
    }
}

/* Signature */

struct pgpDigSigRSA_s {
    BIGNUM *bn;
    size_t len;
};

static int pgpSetSigMpiRSA(pgpDigAlg pgpsig, int num, const uint8_t *p)
{
    BIGNUM *bn = NULL;

    int mlen = pgpMpiLen(p) - 2;
    int rc = 1;

    struct pgpDigSigRSA_s *sig = pgpsig->data;
    if (!sig) {
        sig = xcalloc(1, sizeof(*sig));
    }

    switch (num) {
    case 0:
        if (sig->bn) {
            /* This should only ever happen once per signature */
            return 1;
        }

        bn = sig->bn = BN_new();
        if (!bn) return 1;

        /* Create a BIGNUM from the signature pointer.
           Note: this assumes big-endian data as required
           by the PGP multiprecision integer format
           (RFC4880, Section 3.2)
           This will be useful later, as we can
           retrieve this value with appropriate
           padding. */
        bn = BN_bin2bn(p+2, mlen, bn);
        if (!bn) return 1;

        sig->bn = bn;
        sig->len = mlen;

        pgpsig->data = sig;
        rc = 0;
        break;
    }
    return rc;
}

static void pgpFreeSigRSA(pgpDigAlg pgpsig)
{
    struct pgpDigSigRSA_s *sig = pgpsig->data;
    if (sig) {
        BN_clear_free(sig->bn);
        free(pgpsig->data);
    }
}

static int pgpVerifySigRSA(pgpDigAlg pgpkey, pgpDigAlg pgpsig,
                           uint8_t *hash, size_t hashlen, int hash_algo)
{
    int rc, ret;
    EVP_PKEY_CTX *pkey_ctx = NULL;
    struct pgpDigSigRSA_s *sig = pgpsig->data;

    void *padded_sig = NULL;

    struct pgpDigKeyRSA_s *key = pgpkey->data;

    if (!constructRSASigningKey(key)) {
        rc = 1;
        goto done;
    }

    pkey_ctx = EVP_PKEY_CTX_new(key->evp_pkey, NULL);
    if (!pkey_ctx) {
        rc = 1;
        goto done;
    }

    ret = EVP_PKEY_verify_init(pkey_ctx);
    if (ret < 0) {
        rc = 1;
        goto done;
    }

    ret = EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PADDING);
    if (ret < 0) {
        rc = 1;
        goto done;
    }

    ret = EVP_PKEY_CTX_set_signature_md(pkey_ctx, getEVPMD(hash_algo));
    if (ret < 0) {
        rc = 1;
        goto done;
    }

    int pkey_len = EVP_PKEY_size(key->evp_pkey);
    padded_sig = xcalloc(1, pkey_len);
    if (!BN_bn2binpad(sig->bn, padded_sig, pkey_len)) {
        rc = 1;
        goto done;
    }

    ret = EVP_PKEY_verify(pkey_ctx, padded_sig, pkey_len, hash, hashlen);
    if (ret == 1)
    {
        /* Success */
        rc = 0;
    }
    else
    {
        /* Failure */
        rc = 1;
    }

done:
    EVP_PKEY_CTX_free(pkey_ctx);
    free(padded_sig);
    return rc;
}

/****************************** DSA ***************************************/
/* Key */

struct pgpDigKeyDSA_s {
    BIGNUM *p; /* Prime */
    BIGNUM *q; /* Subprime */
    BIGNUM *g; /* Base */
    BIGNUM *y; /* Public Key */

    DSA *dsa_key; /* Fully constructed key */
};

static int constructDSASigningKey(struct pgpDigKeyDSA_s *key)
{
    int rc;

    if (key->dsa_key) {
        /* We've already constructed it, so just reuse it */
        return 1;
    }

    /* Create the DSA key */
    DSA *dsa = DSA_new();
    if (!dsa) return 0;

    if (!DSA_set0_pqg(dsa, key->p, key->q, key->g)) {
        rc = 0;
        goto done;
    }

    if (!DSA_set0_key(dsa, key->y, NULL)) {
        rc = 0;
        goto done;
    }

    key->dsa_key = dsa;

    rc = 1;
done:
    if (rc == 0) {
        DSA_free(dsa);
    }
    return rc;
}


static int pgpSetKeyMpiDSA(pgpDigAlg pgpkey, int num, const uint8_t *p)
{
    BIGNUM *bn;
    size_t mlen = pgpMpiLen(p) - 2;
    struct pgpDigKeyDSA_s *key = pgpkey->data;

    if (!key) {
        key = pgpkey->data = xcalloc(1, sizeof(*key));
    }

    /* Create a BIGNUM from the key pointer.
       Note: this assumes big-endian data as required
       by the PGP multiprecision integer format
       (RFC4880, Section 3.2) */
    bn = BN_bin2bn(p+2, mlen, NULL);
    if (!bn) return 1;

    switch (num) {
    case 0:
        /* Prime */
        if (key->p) {
            /* This should only ever happen once per key */
            return 1;
        }
        key->p = bn;
        break;

    case 1:
        /* Subprime */
        if (key->q) {
            /* This should only ever happen once per key */
            return 1;
        }
        key->q = bn;
        break;
    case 2:
        /* Base */
        if (key->g) {
            /* This should only ever happen once per key */
            return 1;
        }
        key->g = bn;
        break;
    case 3:
        /* Public */
        if (key->y) {
            /* This should only ever happen once per key */
            return 1;
        }
        key->y = bn;
        break;
    }

    return 0;
}

static void pgpFreeKeyDSA(pgpDigAlg pgpkey)
{
    struct pgpDigKeyDSA_s *key = pgpkey->data;
    if (key) {
        if (key->dsa_key) {
            DSA_free(key->dsa_key);
        } else {
            /* If sig->dsa_key was constructed,
             * the memory management of these BNs
             * are freed with it. */
            BN_clear_free(key->p);
            BN_clear_free(key->q);
            BN_clear_free(key->g);
            BN_clear_free(key->y);
        }
        free(key);
    }
}

/* Signature */

struct pgpDigSigDSA_s {
    BIGNUM *r;
    BIGNUM *s;

    DSA_SIG *dsa_sig;
};

static int constructDSASignature(struct pgpDigSigDSA_s *sig)
{
    int rc;

    if (sig->dsa_sig) {
        /* We've already constructed it, so just reuse it */
        return 1;
    }

    /* Create the DSA signature */
    DSA_SIG *dsa_sig = DSA_SIG_new();
    if (!dsa_sig) return 0;

    if (!DSA_SIG_set0(dsa_sig, sig->r, sig->s)) {
        rc = 0;
        goto done;
    }

    sig->dsa_sig = dsa_sig;

    rc = 1;
done:
    if (rc == 0) {
        DSA_SIG_free(sig->dsa_sig);
    }
    return rc;
}

static int pgpSetSigMpiDSA(pgpDigAlg pgpsig, int num, const uint8_t *p)
{
    BIGNUM *bn = NULL;

    int mlen = pgpMpiLen(p) - 2;
    int rc = 1;

    struct pgpDigSigDSA_s *sig = pgpsig->data;
    if (!sig) {
        sig = xcalloc(1, sizeof(*sig));
    }

    /* Create a BIGNUM from the signature pointer.
       Note: this assumes big-endian data as required
       by the PGP multiprecision integer format
       (RFC4880, Section 3.2) */
    bn = BN_bin2bn(p+2, mlen, NULL);
    if (!bn) return 1;

    switch (num) {
    case 0:
        if (sig->r) {
            /* This should only ever happen once per signature */
            BN_free(bn);
            return 1;
        }
        sig->r = bn;
        rc = 0;
        break;
    case 1:
        if (sig->s) {
            /* This should only ever happen once per signature */
            BN_free(bn);
            return 1;
        }
        sig->s = bn;
        rc = 0;
        break;
    }

    pgpsig->data = sig;

    return rc;
}

static void pgpFreeSigDSA(pgpDigAlg pgpsig)
{
    struct pgpDigSigDSA_s *sig = pgpsig->data;
    if (sig) {
        if (sig->dsa_sig) {
            DSA_SIG_free(sig->dsa_sig);
        } else {
            /* If sig->dsa_sig was constructed,
             * the memory management of these BNs
             * are freed with it. */
            BN_clear_free(sig->r);
            BN_clear_free(sig->s);
        }
        free(pgpsig->data);
    }
}

static int pgpVerifySigDSA(pgpDigAlg pgpkey, pgpDigAlg pgpsig,
                           uint8_t *hash, size_t hashlen, int hash_algo)
{
    int rc, ret;
    struct pgpDigSigDSA_s *sig = pgpsig->data;

    struct pgpDigKeyDSA_s *key = pgpkey->data;

    if (!constructDSASigningKey(key)) {
        rc = 1;
        goto done;
    }

    if (!constructDSASignature(sig)) {
        rc = 1;
        goto done;
    }

    ret = DSA_do_verify(hash, hashlen, sig->dsa_sig, key->dsa_key);
    if (ret == 1)
    {
        /* Success */
        rc = 0;
    }
    else
    {
        /* Failure */
        rc = 1;
    }

done:
    return rc;
}

/****************************** NULL **************************************/

static int pgpSetMpiNULL(pgpDigAlg pgpkey, int num, const uint8_t *p)
{
    return 1;
}

static int pgpVerifyNULL(pgpDigAlg pgpkey, pgpDigAlg pgpsig,
                         uint8_t *hash, size_t hashlen, int hash_algo)
{
    return 1;
}

/****************************** PGP **************************************/
pgpDigAlg pgpPubkeyNew(int algo)
{
    pgpDigAlg ka = xcalloc(1, sizeof(*ka));;

    switch (algo) {
    case PGPPUBKEYALGO_RSA:
        ka->setmpi = pgpSetKeyMpiRSA;
        ka->free = pgpFreeKeyRSA;
        ka->mpis = 2;
        break;
    case PGPPUBKEYALGO_DSA:
        ka->setmpi = pgpSetKeyMpiDSA;
        ka->free = pgpFreeKeyDSA;
        ka->mpis = 4;
        break;
    default:
        ka->setmpi = pgpSetMpiNULL;
        ka->mpis = -1;
        break;
    }

    ka->verify = pgpVerifyNULL; /* keys can't be verified */

    return ka;
}

pgpDigAlg pgpSignatureNew(int algo)
{
    pgpDigAlg sa = xcalloc(1, sizeof(*sa));

    switch (algo) {
    case PGPPUBKEYALGO_RSA:
        sa->setmpi = pgpSetSigMpiRSA;
        sa->free = pgpFreeSigRSA;
        sa->verify = pgpVerifySigRSA;
        sa->mpis = 1;
        break;
    case PGPPUBKEYALGO_DSA:
        sa->setmpi = pgpSetSigMpiDSA;
        sa->free = pgpFreeSigDSA;
        sa->verify = pgpVerifySigDSA;
        sa->mpis = 2;
        break;
    default:
        sa->setmpi = pgpSetMpiNULL;
        sa->verify = pgpVerifyNULL;
        sa->mpis = -1;
        break;
    }
    return sa;
}