File: graphics.rst

package info (click to toggle)
rpy2 3.6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,412 kB
  • sloc: python: 18,448; ansic: 492; makefile: 197; sh: 166
file content (645 lines) | stat: -rw-r--r-- 17,531 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
.. _graphics:

********
Graphics
********

Introduction
============

This section shows how to make R graphics from rpy2, 
using some of the different graphics systems available to R users.

The purpose of this section is to get users going, and be able to figure out
by reading the R documentation how to perform the same plot in rpy2.

.. module:: rpy2.robjects.lib.grdevices
   :synopsis: High-level interface with R

Graphical devices
-----------------

With `R`, all graphics are plotted into a so-called graphical device.
Graphical devices can be interactive, like for example `X11`, 
or non-interactive, like `png` or `pdf`. Non-interactive devices
appear to be files. It is possible to create custom graphical devices
from Python/rpy2, but this an advanced topic (see :ref:`graphicaldevices-custom`).

By default an interactive R session will open an interactive device
when needing one. If a non-interactive graphical device is needed,
one will have to specify it.

.. note::

   Do not forget to close a non-interactive device when done.
   This can be required to flush pending data from the buffer.

The module :mod:`grdevices` aims at representing the R package
grDevices*. Example with the R functions *png* and *dev.off*:

.. code-block:: python

   from rpy2.robjects.packages import importr
   grdevices = importr('grDevices')

   grdevices.png(file="path/to/file.png", width=512, height=512)
   # plotting code here   
   grdevices.dev_off()


The package contains an :class:`Environment` :data:`grdevices_env` that
can be used to access an object known to belong to that R packages, e.g.:

>>> palette = grdevices.palette()
>>> print(palette)
[1] "black"   "red"     "green3"  "blue"    "cyan"    "magenta" "yellow" 
[8] "gray"




Getting ready
-------------

To run examples in this section we first import
:mod:`rpy2.robjects` and define few helper
functions.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- setup-begin
   :end-before: #-- setup-end


Package *lattice*
=================


Introduction
------------


Importing the package `lattice` is done the
same as it is done for other R packages.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- setuplattice-begin
   :end-before: #-- setuplattice-end


Scatter plot
------------

We use the dataset *mtcars*, and will use
the lattice function *xyplot* to make scatter plots.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- setupxyplot-begin
   :end-before: #-- setupxyplot-end


Lattice is working with formulae (see :ref:`robjects-formula`),
therefore we build one and store values in its environment.
Making a plot is then a matter of calling
the function *xyplot* with the *formula* as
as an argument.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- xyplot1-begin
   :end-before: #-- xyplot1-end


.. image:: _static/graphics_lattice_xyplot_1.png
   :scale: 50


The display of group information can be done
simply by using the named parameter groups.
This will indicate the different groups by
color-coding.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- xyplot2-begin
   :end-before: #-- xyplot2-end


.. image:: _static/graphics_lattice_xyplot_2.png
   :scale: 50

An alternative to color-coding is to have 
points is different *panels*. In lattice,
this done by specifying it in the formula.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- xyplot3-begin
   :end-before: #-- xyplot3-end


.. image:: _static/graphics_lattice_xyplot_3.png
   :scale: 50


Box plot
--------

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- bwplot1-begin
   :end-before: #-- bwplot1-end

.. image:: _static/graphics_lattice_bwplot_1.png
   :scale: 50

Other plots
-----------

The R package lattice contains a number of other plots, which unfortunately cannot all be detailled here.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- wireframe1-begin
   :end-before: #-- wireframe1-end

.. image:: _static/graphics_lattice_wireframe_1.png
   :scale: 50

Splitting the information into different panels can also be specified in the formula. Here we show an artifial
example where the split is made according to the values plotted on the Z axis.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- wireframe2-begin
   :end-before: #-- wireframe2-end

.. image:: _static/graphics_lattice_wireframe_2.png
   :scale: 50




Package *ggplot2*
=================

Introduction
------------

The R package *ggplot2* implements the Grammar of Graphics.
While more documentation on the package and its usage with R can be found
on the `ggplot2 website`_, this section will introduce the basic concepts required
to build plots. Obviously, the *R* package *ggplot2* is expected to be installed in the *R*
used from *rpy2*.

.. _ggplot2 website: http://had.co.nz/ggplot2/
 
The package is using the *grid* lower-level plotting infrastructure, that can be accessed
through the module :mod:`rpy2.robjects.lib.grid`. Whenever separate plots on the same device,
or arbitrary graphical elements overlaid, or significant plot customization, or editing,
are needed some knowledge of *grid* will be required.

Here again, having data in a :class:`DataFrame` is expected
(see :ref:`robjects-dataframes` for more information on such objects).

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- setupggplot2-begin
   :end-before: #-- setupggplot2-end

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- dataset-begin
   :end-before: #-- dataset-end



Plot
----


.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2mtcars-begin
   :end-before: #-- ggplot2mtcars-end


.. image:: _static/graphics_ggplot2mtcars.png
   :scale: 50

Aesthethics mapping
^^^^^^^^^^^^^^^^^^^

An important concept for the grammar of graphics is the
mapping of variables, or columns in a data frame, to
graphical representations.

Like it was shown for *lattice*, a third variable can be represented
on the same plot using color encoding, and this is now done by
specifying that as a mapping (the parameter *col* when calling
the constructor for the :class:`AesString`).

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2mtcarscolcyl-begin
   :end-before: #-- ggplot2mtcarscolcyl-end
   
.. image:: _static/graphics_ggplot2mtcarscolcyl.png
   :scale: 50

The size of the graphical symbols plotted (here circular dots) can
also be mapped to a variable:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2aescolsize-begin
   :end-before: #-- ggplot2aescolsize-end
   
.. image:: _static/graphics_ggplot2aescolsize.png
   :scale: 50


Geometry
^^^^^^^^

The *geometry* is how the data are represented. So far we used a scatter
plot of points, but there are other ways to represent our data.


Looking at the distribution of univariate data can be achieved with
an histogram:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geomhistogram-begin
   :end-before: #-- ggplot2geomhistogram-end
   
.. image:: _static/graphics_ggplot2geomhistogram.png
   :scale: 50

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geomhistogramfillcyl-begin
   :end-before: #-- ggplot2geomhistogramfillcyl-end
   
.. image:: _static/graphics_ggplot2geomhistogramfillcyl.png
   :scale: 50

Barplot-based representations of several densities on the same
figure can often be lacking clarity and line-based representation,
either :func:`geom_freqpoly` (representation of the frequency as broken
lines) or :func:`geom_density` (plot a density estimate),
can be in better.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geomfreqpolyfillcyl-begin
   :end-before: #-- ggplot2geomfreqpolyfillcyl-end
   
.. image:: _static/graphics_ggplot2geomfreqpolyfillcyl.png
   :scale: 50




Whenever a large number of points are present, it can become interesting
to represent the density of "dots" on the scatterplot.

With 2D bins:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geombin2d-begin
   :end-before: #-- ggplot2geombin2d-end

With a kernel density estimate:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geomdensity2d-begin
   :end-before: #-- ggplot2geomdensity2d-end

With hexagonal bins:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geomhexbin-begin
   :end-before: #-- ggplot2geomhexbin-end

.. image:: _static/graphics_ggplot2geombin2d.png
   :scale: 50


Box plot:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geomboxplot-begin
   :end-before: #-- ggplot2geomboxplot-end
   
.. image:: _static/graphics_ggplot2geomboxplot.png
   :scale: 50



Boxplots can be used to represent a *summary* of the data with an emphasis
on location and spread.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2aescolboxplot-begin
   :end-before: #-- ggplot2aescolboxplot-end
   
.. image:: _static/graphics_ggplot2aescolboxplot.png
   :scale: 50



Models fitted to the data are also easy to add to a plot:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2addsmooth-begin
   :end-before: #-- ggplot2addsmooth-end

   
.. image:: _static/graphics_ggplot2addsmooth.png
   :scale: 50

The *method* can be one of {*glm*, *gam*, *loess*, *rlm*},
and formula can be specified to declared the fitting (see example below).


.. image:: _static/graphics_ggplot2addsmoothmethods.png
   :scale: 50


The constructor for :class:`GeomSmooth` also accepts a parameter
*groupr* that indicates if the fit should be done according to groups.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2smoothbycyl-begin
   :end-before: #-- ggplot2smoothbycyl-end
   
.. image:: _static/graphics_ggplot2smoothbycyl.png
   :scale: 50



Encoding the information in the column *cyl* is again
only a matter of specifying it in the :class:`AesString` mapping.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2smoothbycylwithcolours-begin
   :end-before: #-- ggplot2smoothbycylwithcolours-end

   
.. image:: _static/graphics_ggplot2_smoothbycylwithcolours.png
   :scale: 50




As can already be observed in the examples with :class:`GeomSmooth`,
several *geometry* objects can be added on the top of each other
in order to create the final plot. For example, a marginal *rug*
can be added to the axis of a regular scatterplot:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geompointandrug-begin
   :end-before: #-- ggplot2geompointandrug-end
   
.. image:: _static/graphics_ggplot2geompointandrug.png
   :scale: 50



.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2geompointdensity2d-begin
   :end-before: #-- ggplot2geompointdensity2d-end
   
.. image:: _static/graphics_ggplot2geompointdensity2d.png
   :scale: 50


Polygons can be used for maps, as shown in the relatively artificial
example below:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2mappolygon-begin
   :end-before: #-- ggplot2mappolygon-end
   
.. image:: _static/graphics_ggplot2map_polygon.png
   :scale: 50



Axes
^^^^

Axes can be transformed and configured in various ways.

A common transformation is the log-transform of the coordinates.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2mtcarscoordtrans-begin
   :end-before: #-- ggplot2mtcarscoordtrans-end


.. image:: _static/graphics_ggplot2mtcars_coordtrans.png
   :scale: 50


.. note:: 

   The red square is an example of adding graphical 
   elements to a ggplot2 figure.

   .. literalinclude:: _static/demos/graphics.py
      :start-after: #-- ggplot2mtcarscoordtransannot-begin
      :end-before: #-- ggplot2mtcarscoordtransannot-end


Facets
^^^^^^

Splitting the data into panels, in a similar fashion to what we did
with *lattice*, is now a matter of adding *facets*. 
A central concept to *ggplot2* is that plot are made of added
graphical elements, and adding specifications such as "I want my data
to be split in panel" is then a matter of adding that information
to an existing plot.

For example, splitting the plots on the data in column *cyl* 
is still simply done by adding a :class:`FacetGrid`.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2smoothbycylfacetcyl-begin
   :end-before: #-- ggplot2smoothbycylfacetcyl-end

   
.. image:: _static/graphics_ggplot2smoothbycylfacetcyl.png
   :scale: 50


The way data are represented (the *geometry* in the terminology
used the grammar of graphics) are still specified the usual way.

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2histogramfacetcyl-begin
   :end-before: #-- ggplot2histogramfacetcyl-end

   
.. image:: _static/graphics_ggplot2histogramfacetcyl.png
   :scale: 50


.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- qplot4-begin
   :end-before: #-- qplot4-end
   
.. image:: _static/graphics_ggplot2_qplot_4.png
   :scale: 50


.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- qplot3addline-begin
   :end-before: #-- qplot3addline-end

   
.. image:: _static/graphics_ggplot2_qplot_5.png
   :scale: 50



.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2smoothblue-begin
   :end-before: #-- ggplot2smoothblue-end

   
.. image:: _static/graphics_ggplot2smoothblue.png
   :scale: 50


.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- ggplot2smoothblue-begin
   :end-before: #-- ggplot2smoothblue-end

   
.. image:: _static/graphics_ggplot2smoothblue.png
   :scale: 50


Extensions and new features
---------------------------

The R package `ggplot2` is under active development, and new
methods (geometry, summary statistics, theme customizations)
are added regularly. In addition to this there exists a
dynamic ecosystem of R packages proposing extensions, and
a user may need R code for ggplot2 not included in our
module. The following steps should make writing the Python
wrapper code a very minimal effort in many cases:

1. Identify the matching type of extension in our class diagram for
   :mod:`rpy2.robjects.lib.ggplot2` (for example, is this an new
   "geometry", statistics, coordinates, theme ?). For example the ggplot2
   function `stat_quantile` is a statistics and the best matching class is
   :class:`rpy2.robjects.lib.ggplot2.Stat`. The more general ancestor
   class :class:`rpy2.robjects.lib.ggplot2.GBaseObject` could also be used.

2. Implement a child class that assign to the class attribute
   :attr:`_constructor` the R constructor function. For example
   `stat_quantile`. The Python callable mapping the R constructor
   is then the class method :meth:`new`. The complete implementation
   for `stat_quantile` is then:
   
   .. code-block:: python

      from rpy2.robjects.packages import importr
      ggplot2_rpack = importr('ggplot2')
      class StatQuantile(Stat):
          """ Continuous quantiles """
          _constructor = ggplot2_rpack.stat_quantile

      stat_quantile = StatQuantile.new

   The callable :func:`stat_quantile` can now be used like any
   other ggplot2 statistics in :mod:`rpy2.robjects.lib.ggplot2`
   (and the object it returns can be added to compose a final
   ggplot figure).


Class diagram
-------------

.. inheritance-diagram:: rpy2.robjects.lib.ggplot2.GBaseObject
			 rpy2.robjects.lib.ggplot2.Coord
			 rpy2.robjects.lib.ggplot2.Element
			 rpy2.robjects.lib.ggplot2.Facet
			 rpy2.robjects.lib.ggplot2.Geom
			 rpy2.robjects.lib.ggplot2.GGPlot
			 rpy2.robjects.lib.ggplot2.Scale
			 rpy2.robjects.lib.ggplot2.Stat
			 rpy2.robjects.lib.ggplot2.Theme
   :parts: 1



Package *grid*
==============

The *grid* package is the underlying plotting environment for *lattice*
and *ggplot2* figures. In few words, it consists in pushing and poping systems
of coordinates (*viewports*) into a stack, and plotting graphical elements into them.
The system can be thought of as a scene graph, with each *viewport* a node in
the graph.

>>> from rpy2.robjects.lib import grid

Getting a new page is achieved by calling the function :func:`grid.newpage`.

Calling :func:`layout` will create a layout, e.g. create a layout with one row
and 3 columns:

>>> lt = grid.layout(1, 3)

That layout can be used to construct a viewport:

>>> vp = grid.viewport(layout = lt)

The created viewport corresponds to a graphical entity.
Pushing into the current viewport, can be done by using the class method
:meth:`grid.Viewport.push`:

>>> vp.push()

Example:

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- grid-begin
   :end-before: #-- grid-end
   
.. image:: _static/graphics_grid.png
   :scale: 50


Custom ggplot2 layout with grid
-------------------------------

.. literalinclude:: _static/demos/graphics.py
   :start-after: #-- gridwithggplot2-begin
   :end-before: #-- gridwithggplot2-end
   
.. image:: _static/graphics_ggplot2withgrid.png
   :scale: 50


Classes
-------

.. autoclass:: rpy2.robjects.lib.grid.Viewport(o)
   :show-inheritance:
   :members:
   :undoc-members:

.. autoclass:: rpy2.robjects.lib.grid.Grob(o)
   :show-inheritance:
   :members:
   :undoc-members:

.. autoclass:: rpy2.robjects.lib.grid.GTree(o)
   :show-inheritance:
   :members:
   :undoc-members:




Class diagram
-------------

.. inheritance-diagram:: rpy2.robjects.lib.grid
   :parts: 1