File: rinterface.rst

package info (click to toggle)
rpy2 3.6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,412 kB
  • sloc: python: 18,448; ansic: 492; makefile: 197; sh: 166
file content (1297 lines) | stat: -rw-r--r-- 36,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
.. module:: rpy2.rinterface
   :platform: Unix, Windows
   :synopsis: Low-level interface with R



*******************
Low-level interface
*******************


Overview
========

The package :mod:`rinterface` is provided as a lower-level interface,
for situations where either the use-cases addressed by :mod:`robjects`
are not covered, or for the cases where the layer in :mod:`robjects`
has an excessive cost in terms of performance.

The package can be imported with:

>>> import rpy2.rinterface as rinterface


.. index::
   single: initialization

Initialization
--------------

One has to initialize R before much can be done.
The function :func:`initr` lets one initialize
the embedded R.

This is done with the function :meth:`initr`.


.. autofunction:: initr()


>>> rinterface.initr()

Initialization should only be performed once. 
To avoid unpredictable results when using the embedded R, 
subsequent calls to :func:`initr` will not have any effect.

The functions :func:`rpy2.rinterface_lib.embedded.get_initoptions` and
:func:`rpy2.rinterface_lib.embedded.set_initoptions`
can be used to modify the options.
Default parameters for the initialization are otherwise
in the module variable `_options`.

.. index::
   single: initialize R_HOME

.. note::

   If calling :func:`initr` returns an error stating that
   :envvar:`R_HOME` is not defined, you should either have the :program:`R` executable in
   your path (:envvar:`PATH` on unix-alikes, or :envvar:`Path` on Microsoft Windows) or
   have the environment variable :envvar:`R_HOME` defined. 

   Should the initialization fail, a mismatch between the version of the R
   rpy2 was compiled against and the R rpy2 is run with should be investigated.
   The variable :attr:`rpy2.rinterface.R_BUILD_VERSION` contains information
   about the R version rpy2 was built against.
   rpy2 is relatively independent of R versions, but changes in the R C API
   might cause problems.

Ending R
^^^^^^^^

Ending the R process is possible, but starting it again with
:func:`initr` does appear to lead to an R process that is hardly usable.
For that reason, the use of :func:`endr` should be considered
carefully, if at all.

.. autofunction:: endr()

.. note::

   When writing a GUI for R, a developper may want to either prevent a user
   to call :program:`R` `quit()`, or ensure that specific code is executed
   before terminating R (for example a confirmation dialog window
   "do you really want to terminate ?").
   This can be done by replacing the callback `cleanup` with an appropriate
   function (see :ref:`rinterface-callbacks_cleanup`).


R space and Python space
------------------------

When using the RPy2 package, two realms are co-existing: R and Python.

:class:`rpy2.rinterface_lib.sexp.Sexp` objects can be considered as Python envelopes pointing
to data stored and administered in the R space.

R variables exist within an embedded R workspace, and can be accessed
from Python through their python object representations.

We distinguish two kinds of R objects: named objects and anonymous objects. 
Named objects have an associated symbol in the R workspace (a "variable name")
while anonymous objects don't, but are protected from garbage collection on the R side
for as long as they are used on the Python side.


Named objects
^^^^^^^^^^^^^

For example, the following R code is creating two objects, named `x` and `hyp`
respectively, in the `global environment`.
Those two objects could be accessed from Python using their names.

.. code-block:: r

   x <- c(1,2,3)

   hyp <- function(x, y) sqrt(x^2 + y^2)

By default R starts with two environments: `baseenv` and `globalenv`.
Both are instances of class :class:`rpy2.rinterface.SexpEnvironment` in rpy2.

.. index::
   single: globalenv
   single: SexpEnvironment; globalenv

.. rubric:: globalenv

The global environment (`globalenv`) can be seen as the root (or topmost) environment,
and is in fact a list, that is a sequence, of environments.

When an R library (package in R's terminology) is loaded,
is it added to the existing sequence of environments. Unless
specified, it is inserted in second position. The first position
being always attributed to the global environment.
The library is said to be attached to the current search path.

.. index::
   pair: rinterface; baseenv
   single: SexpEnvironment; baseenv

.. rubric:: baseenv

The base package has a namespace (`baseenv`), that can be accessed as an environment.

.. note::
   
   Depending on what is in `globalenv` and on the attached packages, base
   objects can be masked when starting the search from `globalenv`. 
   Use `baseenv`
   when you want to be sure to access a function you know to be
   in the base namespace.


Anonymous objects
^^^^^^^^^^^^^^^^^

Anonymous R objects do not have an associated symbol, yet are protected
from garbage collection.

Such objects can be created when using the constructor for an `Sexp*` class.

For example:

>>> x = rinterface.IntVector((1,2,3))

creates a fully usable R vector, but it does not have an associtated
R symbol (it is in memory, but cannot be called by name fomr R). It is 
also protected from garbage collection until, until
`x` is deleted and the Python garbage collector destroys `x`.

.. note::

   To finalize the recovery of the memory used, the R garbage collector
   must be also be called. This should happen automatically while running
   R code when a threshold of memory usage is reached, but it
   is also possible to call explicitly both garbage collectors.
   See :ref:`rinterface-memory` for more details.

Pass-by-value paradigm
----------------------

The root of the R language is functional, with arguments passed by value.
R is actually using tricks to lower memory usage, such as only copying an object
when needed (that is when the object is modified in a local block),
but copies of objects are nevertheless frequent. This can remain unnoticed
by a user until large objects are in use or a large number of modification
of objects are performed, in which case performance issues may appear.
An infamous example is when the column names for a matrix are changed,
bringing a system to its knees when the matrix is very large, 
as the whole matrix ends up being copied. 

On the contrary, Python is using pointer objects passed around
through function calls, and since :mod:`rpy2`, is a Python-to-R interface
the Python approach was conserved.

Although being contrived, the example below will illustrate the point.
With R, renaming a column is like:

.. code-block:: r

   # create a matrix
   m <- matrix(1:10, nrow = 2,
               dimnames = list(c("1", "2"),
	                       c("a", "b", "c", "d", "e")))
   # rename the third column
   i <- 3
   colnames(m)[i] <- "foo"

With :mod:`rpy2.rinterface`:
   
.. code-block:: python

   # import and initialize
   import rpy2.rinterface as ri
   ri.initr()

   # make a function to rename column i
   def rename_col_i(m, i, name):
       m.do_slot("dimnames")[1][i] = name

   # create a matrix
   matrix = ri.baseenv["matrix"]
   rlist = ri.baseenv["list"]
   m = matrix(ri.baseenv[":"](1, 10),
              nrow = 2,
              dimnames = rlist(ri.StrSexpVector(("1", "2")),
	                       ri.StrSexpVector(("a", "b", "c", "d", "e"))))

Now we can check that the column names

>>> tuple(m.do_slot("dimnames")[1])
('a', 'b', 'c', 'd', 'e')

And rename the third column (remembering that R vectors are 1-indexed
while Python sequences are 0-indexed).

>>> i = 3-1   
>>> rename_col_i(m, i, ri.StrSexpVector(("foo", )))
>>> tuple(m.do_slot("dimnames")[1])
('a', 'b', 'foo', 'd', 'e')

Unlike with the R code, neither the matrix or the vector with the column names
are copied. Whenever this is not a good thing, R objects can be copied the
way Python objects are usually copied (using :func:`copy.deepcopy`,
:class:`Sexp` implements :meth:`Sexp.__deepcopy__`).


Parsing and evaluating R code
-----------------------------

The R C-level function for parsing an arbitrary string a R code is exposed
as the function :func:`parse`

>>> expression = ri.parse('1 + 2')

The resulting expression is a nested list of R statements.

>>> len(expression)
1
>>> len(expression[0])
3

The R code *1 + 2* translates to an expression of length 3:
*+(1, 2)*, that is a call to the function *+* (or rather the symbol associated
with the function) with the arguments *1* and *2*. 
 
>>> expression[0][0].typeof
<RTYPES.SYMSXP: 1>
>>> tuple(expression[0][1])
(1.0,)
>>> tuple(expression[0][2])
(2.0,)



.. note ::

   The expression must be evaluated if the result from its execution
   is wanted.


.. autofunction:: parse()

.. index::
   single: rternalize

Calling Python functions from R
-------------------------------

As could be expected from R's functional roots,
functions are first-class objects.
This means that the use of callback functions as passed as parameters
is not seldom,
and this also means that the Python programmer has to either
be able write R code for functions as arguments, or have a way
to pass Python functions to R as genuine R functions. 
That last option is becoming possible, in other words one can
write a Python function and expose it to R in such a way that
the embedded R engine can use as a regular R function.

As an example, let's consider the R function 
*optim()* that looks for optimal parameters for a given cost function.
The cost function should be passed in the call to *optim()* as it will be
repeatedly called as the parameter space is explored, and only Python
coding skills are necessary as the code below demonstrates it.

.. code-block:: python

   from rpy2.robjects.vectors import FloatVector
   from rpy2.robjects.packages import importr
   import rpy2.rinterface as ri
   stats = importr('stats')

   # cost function, callable from R
   @ri.rternalize
   def cost_f(x):
       # Rosenbrock Banana function as a cost function
       # (as in the R man page for optim())
       x1, x2 = x
       return 100 * (x2 - x1 * x1)**2 + (1 - x1)**2

   # starting parameters
   start_params = FloatVector((-1.2, 1))

   # call R's optim() with our cost funtion
   res = stats.optim(start_params, cost_f)

For convenience, the code example uses the higher-level interface
robjects whenever possible.

The lower-level function :func:`rternalize` will take an arbitray
Python function and return an :class:`rinterface.SexpClosure` instance,
that is a object that can be used by R as a function.

.. autofunction:: rternalize()


Interactive features
====================

The embedded R started from :mod:`rpy2` is interactive by default, which 
means that a number of interactive features present when working
in an interactive R console will be available for use.

Such features can be called explicitly by the :mod:`rpy2` user, but
can also be triggered indirectly, as some on the R functions will behave
differently when run interactively compared to when run in the so-called
*BATCH mode*.

.. note::

   However, interactive use may mean the ability to periodically check
   and process events. This is for example the case with interactive
   graphics devices or with the HTML-based help system 
   (see :ref:`rinterface-interactive-processevents`).


I/O with the R console
----------------------

See :ref:`rinterface-callbacks_consoleio`.


.. _rinterface-interactive-processevents:

Processing interactive events
-----------------------------

.. codeauthor:: Nathaniel Smith, Laurent Gautier

An interactive R session is can start interactive activities
that require a continuous monitoring for events. A typical example
is the interactive graphical devices (`plotting windows`),
as they can be resized and the information they display is refreshed.

However, to do so the R process must be instructed to process
pending interactive events. This is done by the R console for example,
but :mod:`rpy2` is designed as a library rather than as a threaded R process
running within Python (yet this can be done as shown below).

The way to restore interactivity is to simply call the function
:func:`rinterface_lib.callbacks.process_revents` at regular intervals.

A higher-level interface is available, running the processing of
R events in a thread (see Section :ref:`interactive-reventloop`).


Multithreading
==============

R is quite not friendly to multithreading, and trying to play with threads at the C
level can quickly result in an embedded R crashing. Since we are using R's C API
and Python can do multithreading, getting to such software failure will not be too hard.
However, multithreading should not be considered impossible, or even very difficult to
achieve when applying the one guideline below.

:mod:`rpy2` has a lock that can be used as a context manager. Interactions with R
that a code author knows should never be interrupted by thread switching can simply
be wrapped in a thread-locked block as follows:

.. code-block:: python

   from rpy2.rinterface_lib import openrlib

   with openrlib.rlock:
       # (put interactions with R that should not be interrupted by
       # thread switching here).
       pass

That lock is already used in a handful of critical low-level accesses to the R
API in the :mod:`rpy2` code base
(e.g., when a protection/unprotection stack is used for R objects transiently
protected from garbage collection, or when the embedded R is initialized) but
can be safely reused and nested in higher level code.

.. note::

   Web Server Gateway Interfaces (WSGIs) for Python scripts can use multithreading
   to optimize resources, allowing one process to handle several connections as
   they are presumably of higher latency than what happens on the server side.

   When using :class:`rpy2` to build services that run R code, attention should be
   paid to whether threads are used, and if the case the lock mentioned in this
   section should be used to ensure that coherent results results are computed by R
   even in the presence of multithreading.


Classes
=======


:class:`Sexp`
-------------

The class :class:`Sexp` is the base class for all R objects.

.. class:: Sexp

   .. attribute:: __sexp__

      Python C capsule wrapping the pointer to the underlying R object (`SEXP`)

   .. attribute:: named

      :program:`R` does not count references for its object. This method
      returns the `NAMED` value (an integer). 
      See the R-extensions manual for further details.

   .. attribute:: typeof

      Internal R type for the underlying R object

      .. doctest::

         >>> letters.typeof
         <RTYPES.STRSXP: 16>

   .. method:: __deepcopy__(self)

      Make a *deep* copy of the object, calling the R-API C function
      c:function::`Rf_duplicate()` for copying the R object wrapped.

      .. versionadded:: 2.0.3

   .. method:: do_slot(name)

      R objects can be given attributes. In R, the function
      *attr* lets one access an object's attribute; it is
      called :meth:`do_slot` in the C interface to R. 

      :param name: string
      :rtype: instance of :class:`Sexp`

      >>> matrix = rinterface.globalenv.find("matrix")
      >>> letters = rinterface.globalenv.find("letters")
      >>> m = matrix(letters, ncol = 2)
      >>> [x for x in m.do_slot("dim")]
      [13, 2]
      >>>

   .. method:: do_slot_assign(name, value)

      Assign value to the slot with the given name, creating the slot whenver
      not already existing.

      :param name: string
      :param value: instance of :class:`Sexp`


   .. method:: rsame(sexp_obj)

      Tell whether the underlying R object for sexp_obj is the same or not.

      :rtype: boolean


.. .. autoclass:: rpy2.rinterface.Sexp
..   :members:


Underlying R object
^^^^^^^^^^^^^^^^^^^

The underlying R object is a pointer to a c:type::`SEXPREC` as defined in R's
`Rinternals.h`. That object is wrapped in a c:type::`SexpObj` and placed in
a Python capsule.

The capsule is providing a relatively safe mechanism to exchange underlying
R objects between rpy2 objects.

.. code-block:: python

   from rpy2.rinterface import SexpIntVector, SexpFloatVector
   vector1=SexpIntVector((1, 2, 3))
   vector2=SexpFloatVector((4.0, 5.0, 6.0))

   vector1.__sexp__ = vector2.__sexp_


.. index::
   single: SexpVector
   single: rinterface; SexpVector


R arrays (vectors) inherit from :class:`SexpVector`
---------------------------------------------------

Overview
^^^^^^^^

In R there are no scalars, only arrays (called "vectors" when unidimensional).
Anything like a one-value variable is in fact a vector of
length 1.

To use again the constant *pi*:

>>> pi = rinterface.globalenv.find('pi')
>>> len(pi)
1
>>> pi
<rinterface.FloatSexpVector - Python:0x2b20325d2660 / R:0x16d5248>
>>> pi[0]
3.1415926535897931
>>>

The letters of the (western) alphabet are:

>>> letters = rinterface.globalenv.find('letters') 
>>> len(letters)
26
>>> LETTERS = rinterface.globalenv.find('LETTERS') 


R types
^^^^^^^

R vectors all have a `type`, sometimes referred to in R as a `mode`. Rpy2 has chosen
to map R types to child classes of :class:`rpy2.rinterface_lib.sexp.SexpVector`, as shown
in the inheritance diagram below, with the :mod:`numpy` array interface implemented for
some of them.

.. inheritance-diagram:: rpy2.rinterface.SexpVector rpy2.rinterface.IntSexpVector rpy2.rinterface.FloatSexpVector rpy2.rinterface.ByteSexpVector rpy2.rinterface.ComplexSexpVector rpy2.rinterface.StrSexpVector rpy2.rinterface.ListSexpVector rpy2.rinterface.PairlistSexpVector rpy2.rinterface.ExprSexpVector rpy2.rinterface.LangSexpVector rpy2.rinterface.BoolSexpVector
   :parts: 1
   :caption: C-level R array objects
	   
.. index::
   pair: rinterface;indexing

Indexing
^^^^^^^^

The indexing is working like it would on regular `Python`
tuples or lists.
The indexing starts at 0 (zero), which differs from :program:`R`, 
where indexing start at 1 (one).

.. note::
   
   The *__getitem__* operator *[*
   is returning a Python scalar. Casting
   an *SexpVector* into a list is only a matter 
   of either iterating through it, or simply calling
   the constructor :func:`list`.


Common attributes
^^^^^^^^^^^^^^^^^

.. index::
   single: names;rinterface

.. rubric:: Names


In R, vectors can be named, that is each value in the vector
can be given a name (that is be associated a string).
The names are added to the other as an attribute (conveniently
called `names`), and can be accessed as such:

>>> options = rinterface.globalenv.find("options")()
>>> option_names = options.do_slot("names")
>>> [x for x in options_names]

.. note::
   
   Elements in a name vector do not have to be unique. A Python
   counterpart is provided as :class:`rpy2.rlike.container.TaggedList`.

.. index::
   single: dim
   single: dimnames


.. rubric:: Dim and dimnames

In the case of an `array`, the names across the
respective dimensions of the object are accessible
through the slot named `dimnames`.


.. index::
   single: missing values

.. rubric:: Missing values

.. _missing_values:

.. note::
   
   R also has the notion of missing parameters in function calls.
   This is a separate concept, and more information about are given in 
   Section :ref:`rinterface-functions`.

In R missing the symbol *NA* represents a missing value.
The general rule that R scalars are in fact vectors applies here again,
and the following R code is creating a vector of length 1.

.. code-block:: r

   x <- NA

The type of NA is logical (boolean), and one can specify a different
type with the symbols
*NA_character_*, *NA_integer_*, *NA_real_*, and *NA_complex_*.

In :mod:`rpy2.rinterface_lib.na_values`, the symbols can be accessed by through 
:data:`NACharacter`, 
:data:`NAInteger`, 
:data:`NAReal`.

Those are singleton instance from respective *NA<something>Type* classes.

>>> my_naint = rinterface_lib.na_values.NAIntegerType()
>>> my_naint is rinterface_lib.na_values.NA_Integer
True
>>> my_naint == rinterface_lib.na_values.NA_Integer
True

*NA* values can be present in vectors returned by R functions.

>>> rinterface.baseenv['as.integer'](rinterface.StrSexpVector(("foo",)))[0]
NA_integer_

*NA* values can have operators implemented, but the results will then
be missing values.
 
>>> rinterface.NA_Integer + 1
NA_integer_
>>> rinterface.NA_Integer * 10
NA_integer_

.. warning::
   
   Python functions relying on C-level implementations might not be following
   the same rule for *NAs*.
   
   >>> x = rinterface.IntSexpVector((1, rinterface.NA_Integer, 2))
   >>> sum(x)
   3
   >>> max(x)
   2
   >>> min(x)
   NA_integer_


This should be preferred way to use R's NA as those symbol are little
peculiar and cannot be retrieved with :meth:`SexpEnvironment.find`.

Those missing values can also be used with the :mod:`rpy2.robjects` layer
and more documentation about their usage can be found there
(see :ref:`robjects-missingvalues`).

.. autoclass:: rpy2.rinterface_lib.sexp.NAIntegerType()
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface_lib.sexp.NARealType()
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface_lib.sexp.NALogicalType()
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface_lib.sexp.NACharacterType()
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface_lib.sexp.NAComplexType()
   :show-inheritance:
   :members:


.. rubric:: Constructors

.. autoclass:: rpy2.rinterface.SexpVector(obj, sexptype, copy)
   :show-inheritance:
   :members:


Convenience classes are provided to create vectors of a given type:

.. autoclass:: rpy2.rinterface.StrSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.IntSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.ByteSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.FloatSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.BoolSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.ListSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.PairlistSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.ComplexSexpVector
   :show-inheritance:
   :members:

.. autoclass:: rpy2.rinterface.LangSexpVector
   :show-inheritance:
   :members:

.. index::
   single: SexpEnvironment
   single: rinterface; SexpEnvironment

.. _rinterface-sexpenvironment:

:class:`SexpEnvironment`
------------------------



:meth:`__getitem__` / :meth:`__setitem__` / :meth:`__delitem__`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The *[* operator will only look for a symbol in the environment
without looking further in the path of enclosing environments.

The following will return an exception :class:`LookupError`:

>>> rinterface.globalenv["pi"]

The constant *pi* is defined in R's *base* package,
and therefore cannot be found in the Global Environment.

The assignment of a value to a symbol in an environment is as
simple as assigning a value to a key in a Python dictionary:

>>> x = rinterface.IntSexpVector([123, ])
>>> rinterface.globalenv["x"] = x
>>> len(x)
1
>>> tuple(rinterface.globalenv)
('x', )

Removing an element can be done like one would do it for a Python :class:`dict`:

>>> del(rinterface.globalenv['x'])
>>> len(x)
0

.. note::
   
   Not all R environment are hash tables, and this may
   influence performances when doing repeated lookups.

.. note::
   
   A copy of the R object is made in the R space.

:meth:`__iter__`
^^^^^^^^^^^^^^^^

The object is made iter-able.

For example, we take the base name space (that is the environment
that contains R's base objects:

>>> base = rinterface.baseenv
>>> basetypes = [x.typeof for x in base]


.. warning::
   
   In the current implementation the content of the environment
   is evaluated only once, when the iterator is created. Adding 
   or removing elements to the environment will not update the iterator
   (this is a problem, that will be solved in the near future).


:meth:`find`
^^^^^^^^^^^^

Whenever a search for a symbol is performed, the whole
search path is considered: the environments in the list
are inspected in sequence and the value for the first symbol found
matching is returned.

Let's start with an example:

>>> rinterface.globalenv.find("pi")[0]
3.1415926535897931

The constant `pi` is defined in the package `base`, that
is always in the search path (and in the last position, as it is
attached first). The call to :meth:`get` will
look for `pi` first in `globalenv`, then in the next environment
in the search path and repeat this until an object is found or the
sequence of environments to explore is exhausted.

We know that `pi` is in the base namespace and we could have gotten
here directly from there:

>>> ri.baseenv.find('pi')[0]
3.1415926535897931
>>> ri.baseenv['pi'][0]
3.1415926535897931
>>> ri.globalenv["pi"][0]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
LookupError: 'pi' not found

:program:`R` can look specifically for functions, which is happening when
a parsed function call is evaluated.
The following example of an :program:`R` interactive session should demonstrate it:

.. code-block:: r

   > mydate <- "hohoho"
   > mydate()
   Error: could not find function "mydate"
   >
   > date <- "hohoho"
   > date()
   [1] "Sat Aug  9 15:27:40 2008"

The base function `date` is still found, although a non-function object
is present earlier on the search path.

The same behavior can be obtained from :mod:`rpy2`
with the optional parameter `wantfun` (specify that :meth:`get`
should return an R function).

>>> ri.globalenv['date'] = ri.StrSexpVector(['hohoho', ])
>>> ri.globalenv.find('date')[0]
'hohoho'
>>> ri.globalenv.find('date', wantfun=True)
<rinterface.SexpClosure - Python:0x7f142aa96198 / R:0x16e9500>
>>> date = ri.globalenv.find('date', wantfun=True)
>>> date()[0]
'Sat Aug  9 15:48:42 2008'


R packages as environments
^^^^^^^^^^^^^^^^^^^^^^^^^^

In a `Python` programmer's perspective, it would be nice to map loaded :program:`R`
packages as modules and provide access to :program:`R` objects in packages the
same way than `Python` object in modules are accessed.

This is unfortunately not possible in a completely
robust way: the dot character `.`
can be used for symbol names in R (like pretty much any character), and
this can make an exact correspondance between :program:`R` and `Python` names 
rather difficult.
:mod:`rpy` uses transformation functions that translates `'.'` to `'_'` and back,
but this can lead to complications since `'_'` can also be used for R symbols 
(although this is the approach taken for the high-level interface, see
Section :ref:`robjects-packages`).

There is a way to provide explict access to object in R packages, since
loaded packages can be considered as environments. To make it convenient
to use, one can consider making a function such as the one below:

.. code-block:: python

   def rimport(packname):
       """ import an R package and return its environment """
       as_environment = rinterface.baseenv['as.environment']
       require = rinterface.baseenv['require']
       require(rinterface.StrSexpVector(packname), 
               quiet = rinterface.BoolSexpVector((True, )))
       packname = rinterface.StrSexpVector(('package:' + str(packname)))
       pack_env = as_environment(packname)
       return pack_env

>>> class_env = rimport("class")
>>> class_env['knn']


For example, we can reimplement in `Python` the :program:`R` function 
returning the search path (`search`).

.. code-block:: python

   def rsearch():
       """ Return a list of package environments corresponding to the
       R search path. """
       spath = [ri.globalenv, ]
       item = ri.globalenv.enclos()
       while not item.rsame(ri.emptyenv):
           spath.append(item)
	   item = item.enclos()
       spath.append(ri.baseenv)
       return spath


As an other example, one can implement simply a function that
returns from which environment an object called by :meth:`get` comes
from.

.. code-block:: python

   def wherefrom(name, startenv=ri.globalenv):
       """ when calling 'get', where the R object is coming from. """
       env = startenv
       obj = None
       retry = True
       while retry:
           try:
               obj = env[name]
               retry = False
           except LookupError, knf:
               env = env.enclos()
	       if env.rsame(ri.emptyenv):
                   retry = False
               else:
                   retry = True
       return env       


>>> wherefrom('plot').do_slot('name')[0]
'package:graphics'
>>> wherefrom('help').do_slot('name')[0]
'package:utils'

.. note::
   
   Unfortunately this does not generalize to all cases: the base
   package does not have a name.

   >>> wherefrom('get').do_slot('name')[0]
   Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
   LookupError: The object has no such attribute.


.. index::
   single: closure
   single: SexpClosure
   single: rinterface; SexpClosure
   pair: rinterface; function


.. _rinterface-functions:

Functions
---------

.. rubric:: A function with a context

In R terminology, a closure is a function (with its enclosing
environment). That enclosing environment can be thought of as
a context to the function.

.. note::
   
   Technically, the class :class:`SexpClosure` corresponds to the R
   types CLOSXP, BUILTINSXP, and SPECIALSXP, with only the first one
   (CLOSXP) being a closure.

>>> sum = rinterface.globalenv.find('sum')
>>> x = rinterface.IntSexpVector([1,2,3])
>>> s = sum(x)
>>> s[0]
6

.. rubric:: Named arguments

Named arguments to an R function can be specified just the way
they would be with any other regular Python function.

>>> rnorm = rinterface.globalenv.find('rnorm')
>>> rnorm(rinterface.IntSexpVector([1, ]), 
          mean = rinterface.IntSexpVector([2, ]))[0]
0.32796768001636134

There are however frequent names for R parameters causing problems: all the names with a *dot*. using such parameters for an R function will either require
to:

* use the special syntax `**kwargs` on a dictionary with the named parameters

* use the method :meth:`rcall`.  


.. Index::
   single: rcall; order of parameters

.. rubric:: Order for named parameters

One point where function calls in R can differ from the ones in 
Python is that
all parameters in R are passed in the order they are in the call
(no matter whether the parameter is named or not),
while in Python only parameters without a name are passed in order.
Using the class :class:`OrdDict` in the module :mod:`rpy2.rlike.container`,
together with the method :meth:`rcall`,
permits calling a function the same way it would in R. For example::

   import rpy2.rlike.container as rpc
   args = rpc.OrdDict()
   args['x'] = rinterface.IntSexpVector([1,2,3])
   args[None] = rinterface.IntSexpVector([4,5])
   args['y'] = rinterface.IntSexpVector([6, ])
   rlist = rinterface.baseenv['list']
   rl = rlist.rcall(tuple(args.items()), rinterface.globalenv)

>>> [x for x in rl.do_slot("names")]
['x', '', 'y']

.. index::
   single: closureEnv

.. rubric:: closureEnv

In the example below, we inspect the environment for the
function *plot*, that is the namespace for the
package *graphics*.

>>> plot = rinterface.globalenv.find('plot')
>>> ls = rinterface.globalenv.find('ls')
>>> envplot_list = ls(plot.closureEnv())
>>> [x for x in envplot_ls]
>>>


.. rubric:: Missing parameters

In R function calls can contain explicitely missing parameters.

.. code-block:: rconsole

   > sum(1,,3)
   Error: element 2 is empty;
      the part of the args list of 'sum' being evaluated was:
      (1, , 3)

This is used when extracting a subset of an array, with a missing
parameter interpreted by the extract function `[` like all elements
across that dimension must be taken.

.. code-block:: r

   m <- matrix(1:10, nrow = 5, ncol = 2)

   # extract the second column
   n <- m[, 2]

   # can also be written
   n <- "["(m, , 2)

:data:`rinterface.MissingArg` is a pointer to the singleton :class:`rinterface.MissingArgType`,
allowing to explicitly pass missing parameters to a function call.

For example, the extraction of the second column of a matrix with R shown above,
will write almost identically in rpy2.

.. code-block:: python

   import rpy2.rinterface as ri
   ri.initr()

   matrix = ri.baseenv['matrix']
   extract = ri.baseenv['[']

   m = matrix(ri.IntSexpVector(range(1, 11)), nrow = 5, ncol = 2)

   n = extract(m, ri.MissingArg, 2)


:class:`SexpS4`
---------------

Object-Oriented programming in R exists in several flavours, and one
of those is called `S4`.
It has its own type at R's C-API level, and because of that specificity
we defined a class. Beside that, the class does not provide much specific
features (see the pydoc for the class below). 

An instance's attributes can be accessed through the parent
class :class:`Sexp` method
:meth:`do_slot`.

.. autoclass:: rpy2.rinterface.SexpS4(obj)
   :show-inheritance:
   :members:

:class:`SexpExtPtr`
-------------------

External pointers are intended to facilitate the handling of C or C++ data structures
from R. In few words they are pointers to structures *external* to R. They have
been used to implement vectors and arrays in shared memory, or storage-based vectors
and arrays.

External pointers also do not obey the pass-by-value rule and can represent a way
to implement pointers in R.


Let us consider the following simple example:

.. code-block:: python
   
   ep = rinterface.SexpExtPtr.from_pyobject('hohoho')

The Python string is now encapsulated into an R external pointer, and visible as such
by the embedded R process.

When thinking of sharing C-level structures between R and Python more involved examples
can be considered (here still a simple example):

.. code-block:: python

   import ctypes
   class Point2D(ctypes.Structure):
       _fields_ = [('x', ctypes.c_int),
                   ('y', ctypes.c_int)]

   pt = Point2D()

   ep = rinterface.SexpExtPtr.from_pyobject(pt)


However, this remains a rather academic exercise unless there exists a way to access the
data from R; when used in R packages, external pointers have companion functions to
manipulate the C-level data structures.

In the case of external pointers and their companion functions and methods
defined by R packages, the rpy2 interface lets a programmer create such external pointers
directly from Python, using :mod:`ctypes` for example.

However, the rpy2 interface allows more than that since a programmer is able to make
a Python function accessible to R has is was a function of its own. It is possible
to define arbitrary Python data structures as well as functions or methods to operate
on them, pass the data structure to R as an external pointer, and expose the functions
and methods to R. 

.. autoclass:: rpy2.rinterface.SexpExtPtr(obj)
   :show-inheritance:
   :members:

Class diagram
=============

.. inheritance-diagram:: rpy2.rinterface rpy2.rinterface_lib.sexp rpy2.rinterface_lib.na_values
   :parts: 1


Misc. variables
===============

.. index::
   single: R_LEN_T_MAX
   single: R_HOME
   single: TRUE
   single: FALSE


R_HOME
  R HOME

:const:`R_LEN_T_MAX`
  largest usable integer for indexing R vectors

:const:`TRUE`/:const:`FALSE`
  R's TRUE and FALSE

.. index::
   single: CPLXSXP
   single: type; CPLXSXP
   single: ENVSXP
   single: type; ENVSXP
   single: INTSXP
   single: type; INTSXP
   single: LANGSXP
   single: type; LANGSXP
   single: LGLSXP
   single: type; LGLSXP
   single: STRSXP
   single: type; STRSXP
   single: REALSXP
   single: type; REALSXP
   single: RAWSXP
   single: type; RAWSXP

R types
-------

Vector types
^^^^^^^^^^^^

:const:`CPLXSXP`
  Complex 

:const:`INTSXP`
  Integer.

:const:`LGLSXP`
  Boolean (logical in the R terminology)

:const:`RAWSXP`
  Raw (bytes) value

:const:`REALSXP`
  Numerical value (float / double)

:const:`STRSXP`
  String

:const:`VECSXP`
  List

:const:`LISTSXP`
  Paired list

:const:`LANGSXP`
  Language object.

:const:`EXPRSXP`
  Unevaluated expression.

Function types
^^^^^^^^^^^^^^

:const:`CLOSXP`
  Function with an enclosure. Represented by :class:`rpy2.rinterface.SexpClosure`.

:const:`BUILTINSXP`
  Base function

:const:`SPECIALSXP`
  Some other kind of function

Other types
^^^^^^^^^^^

:const:`ENVSXP`
  Environment. Represented by :class:`rpy2.rinterface.SexpEnvironment`.

:const:`S4SXP`
  Instance of class S4. Represented by :class:`rpy2.rinterface.SexpS4`.


Types one should not meet
^^^^^^^^^^^^^^^^^^^^^^^^^

:const:`PROMSXP`
  Promise.