1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
|
.. module:: rpy2.robjects.vector
:platform: Unix, Windows
:synopsis: High-level interface with R
Vectors and arrays
==================
Beside functions and environments, most of the objects
an R user is interacting with are vector-like.
For example, this means that any scalar is in fact a vector
of length one.
The class :class:`Vector` has a constructor:
>>> x = robjects.Vector(3)
.. autoclass:: rpy2.robjects.Vector(o)
:show-inheritance:
:members:
Creating vectors
----------------
Creating vectors can be achieved either from R or from Python.
When the vectors are created from R, one should not worry much
as they will be exposed as they should by :mod:`rpy2.robjects`.
When one wants to create a vector from Python, either the
class :class:`Vector` or the convenience classes
:class:`IntVector`, :class:`FloatVector`, :class:`BoolVector`,
:class:`StrVector` can be used.
.. autoclass:: rpy2.robjects.vectors.BoolVector(obj)
:show-inheritance:
:members:
.. autoclass:: rpy2.robjects.vectors.IntVector(obj)
:show-inheritance:
:members:
.. autoclass:: rpy2.robjects.vectors.FloatVector(obj)
:show-inheritance:
:members:
.. autoclass:: rpy2.robjects.vectors.StrVector(obj)
:show-inheritance:
:members:
.. autoclass:: rpy2.robjects.vectors.ListVector(obj)
:show-inheritance:
:members:
Sequences of date or time points can be stored in
:class:`POSIXlt` or :class:`POSIXct` objects. Both can be created
from Python sequences of :class:`time.struct_time` objects or
from R objects.
.. autoclass:: rpy2.robjects.vectors.POSIXlt(obj)
:show-inheritance:
:members:
.. autoclass:: rpy2.robjects.vectors.POSIXct(obj)
:show-inheritance:
:members:
.. versionadded:: 2.2.0
Vectors for date or time points
FactorVector
^^^^^^^^^^^^
R's factors are somewhat peculiar: they aim at representing
a memory-efficient vector of labels, and in order to achieve it
are implemented as vectors of integers to which are associated a (presumably
shorter) vector of labels. Each integer represents the position
of the label in the associated vector of labels.
For example, the following vector of labels
+---+---+---+---+---+---+
| a | b | a | b | b | c |
+---+---+---+---+---+---+
will become
+---+---+---+---+---+---+
| 1 | 2 | 1 | 2 | 2 | 3 |
+---+---+---+---+---+---+
and
+---+---+---+
| a | b | c |
+---+---+---+
>>> sv = ro.StrVector('ababbc')
>>> fac = ro.FactorVector(sv)
>>> print(fac)
[1] a b a b b c
Levels: a b c
>>> tuple(fac)
(1, 2, 1, 2, 2, 3)
>>> tuple(fac.levels)
('a', 'b', 'c')
Since a :class:`FactorVector` is an :class:`IntVector` with attached
metadata (the levels), getting items Python-style was not changed from
what happens when gettings items from a :class:`IntVector`.
A consequence to that is that information about the
levels is then lost.
>>> item_i = 0
>>> fac[item_i]
1
Getting the level corresponding to an item requires using the :attr:`levels`,:
>>> fac.levels[fac[item_i] - 1]
'a'
.. warning::
Do not forget to subtract one to the value in the :class:`FactorVector`.
Indexing in Python starts at zero while indexing R starts at one,
and recovering the level for an item requires an adjustment between the two.
When extracting elements from a :class:`FactorVector` a sensible default
might be to use R-style extracting (see :ref:`robjects-extracting`),
as it preserves the integer/string duality.
.. autoclass:: rpy2.robjects.vectors.FactorVector(obj)
:show-inheritance:
:members:
.. index::
pair: Vector;extracting
.. _robjects-extracting:
Extracting items
----------------
Extracting elements of sequence/vector can become a thorny issue
as Python and R differ on a number of points
(index numbers starting at zero / starting at one,
negative index number meaning *index from the end* / *everything except*,
names cannot / can be used for subsettting).
In order to solve this, the Python way and the R way were
made available through two different routes.
Extracting, Python-style
^^^^^^^^^^^^^^^^^^^^^^^^^
The python :meth:`__getitem__` method behaves like a Python user would expect
it for a vector (and indexing starts at zero).
>>> x = robjects.r.seq(1, 5)
>>> tuple(x)
(1, 2, 3, 4, 5)
>>> x.names = robjects.StrVector('abcde')
>>> print(x)
a b c d e
1 2 3 4 5
>>> x[0]
1
>>> x[4]
5
>>> x[-1]
5
Extracting, R-style
^^^^^^^^^^^^^^^^^^^
Access to R-style extracting/subsetting is granted though the two
delegators *rx* and *rx2*, representing the R functions `[` and `[[`
respectively (See the note below about `[[`, and `$`).
In short, R-style extracting has the following characteristics:
* indexing starts at one (while Python indexing starts at zero).
* the argument to subset on can be a vector of
- integers (negative integers meaning exlusion of the elements)
- booleans
- strings (whenever the vector has *names* for its elements)
>>> print(x.rx(1))
[1] 1
>>> print(x.rx('a'))
a
1
R can extract several elements at once:
>>> i = robjects.IntVector((1, 3))
>>> print(x.rx(i))
[1] 1 3
>>> b = robjects.BoolVector((False, True, False, True, True))
>>> print(x.rx(b))
[1] 2 4 5
When a boolean extract vector is of smaller length than the vector,
is expanded as necessary (this is know in R as the `recycling rule`):
>>> print(x.rx(True))
1:5
>>> b = robjects.BoolVector((False, True))
>>> print(x.rx(b))
[1] 2 4
In R, negative indices are understood as element exclusion.
>>> print(x.rx(-1))
2:5
>>> i = robjects.IntVector((-1, -3))
>>> print(x.rx(i))
[1] 2 4 5
That last example could also be written:
>>> i = - robjects.IntVector((1, 3)).ro
>>> print(x.rx(i))
[1] 2 4 5
This extraction system is quite expressive, as it allows a very simple writting of
very common tasks in data analysis such as reordering and random sampling.
>>> from rpy2.robjects.packages import importr
>>> base = importr('base')
>>> x = robjects.IntVector((5,3,2,1,4))
>>> o_i = base.order(x)
>>> print(x.rx(o_i))
[1] 1 2 3 4 5
>>> rnd_i = base.sample(x)
>>> x_resampled = x.rx(o_i)
R operators are vector operations, with the operator applied
to each element in the vector. This can be used to build extraction
indexes.
>>> i = x.ro > 3 # extract values > 3
>>> i = (x.ro >= 2 ).ro & (x.ro <= 4) # extract values between 2 and 4
(More on R operators in Section :ref:`robjects-operationsdelegator`).
R/S also have particularities, in which some see consistency issues.
For example although the indexing starts at 1, indexing on 0
does not return an *index out of bounds* error but a vector
of length 0:
>>> print(x.rx(0))
integer(0)
.. note::
What about the R operator `$` ? In R, elements of a list can be
extracted with `[`, or if only one element is wanted `[[` or `$`
(with `[[` able to extract on index, that is position in the list,
or on name while `$` can only extract on name).
In R, the 3 ways to extract one element out of a list are:
.. code-block:: r
> l <- list(a = 1:3, b = 4:6)
> l[[1]]
[1] 1 2 3
> l[["a"]]
[1] 1 2 3
> l$a
[1] 1 2 3
With rpy2, it is looking like:
.. code-block:: python
>>> elt = l.rx2(1) # This is the R `[[`, so one-offset indexing
>>> elt = l.rx2('a')
Assigning items
---------------
Assigning, Python-style
^^^^^^^^^^^^^^^^^^^^^^^
Since vectors are exposed as Python mutable sequences, the assignment works
as for regular Python lists.
>>> x = robjects.IntVector((1,2,3))
>>> print(x)
[1] 1 2 3
>>> x[0] = 9
>>> print(x)
[1] 9 2 3
In R vectors can be *named*, that is elements of the vector have a name.
This is notably the case for R lists. Assigning based on names can be made
easily by using the method :meth:`Vector.index`, as shown below.
>>> x = robjects.ListVector({'a': 1, 'b': 2, 'c': 3})
>>> x[x.names.index('b')] = 9
.. note::
:meth:`Vector.index` has a complexity linear in the length of the vector's length;
this should be remembered if performance issues are met.
Assigning, R-style
^^^^^^^^^^^^^^^^^^
Differences between the two languages require few adaptations, and in
appearance complexify a little the task.
Should other Python-based systems for the representation of (mostly numerical)
data structure, such a :mod:`numpy` be preferred, one will be encouraged to expose
our rpy2 R objects through those structures.
The attributes `rx` and `rx2` used previously can again be used:
>>> x = robjects.IntVector(range(1, 4))
>>> print(x)
[1] 1 2 3
>>> x.rx[1] = 9
>>> print(x)
[1] 9 2 3
For the sake of complete compatibility with R, arguments can be named
(and passed as a :class:`dict` or :class:`rpy2.rlike.container.TaggedList`).
>>> x = robjects.ListVector({'a': 1, 'b': 2, 'c': 3})
>>> x.rx2[{'i': x.names.index('b')}] = 9
.. _robjects-missingvalues:
Missing values
--------------
Anyone with experience in the analysis of real data knows that
some of the data might be missing. In S/Splus/R special *NA* values can be used
in a data vector to indicate that fact, and :mod:`rpy2.robjects` makes aliases for
those available as data objects :data:`NA_Logical`, :data:`NA_Real`,
:data:`NA_Integer`, :data:`NA_Character`, :data:`NA_Complex`.
>>> x = robjects.IntVector(range(3))
>>> x[0] = robjects.NA_Integer
>>> print(x)
[1] NA 1 2
The translation of NA types is done at the item level, returning a pointer to
the corresponding NA singleton class.
>>> x[0] is robjects.NA_Integer
True
>>> x[0] == robjects.NA_Integer
True
>>> [y for y in x if y is not robjects.NA_Integer]
[1, 2]
.. note::
:data:`NA_Logical` is the alias for R's *NA*.
.. note::
The NA objects are imported from the corresponding
:mod:`rpy2.rinterface` objects.
.. _robjects-operationsdelegator:
Operators
---------
Mathematical operations on two vectors: the following operations
are performed element-wise in R, recycling the shortest vector if, and
as much as, necessary.
To expose that to Python, a delegating attribute :attr:`ro` is provided
for vector-like objects.
+----------+-----------------+
| Python | R |
+==========+=================+
| ``+`` | ``+`` |
+----------+-----------------+
| ``-`` | ``-`` |
+----------+-----------------+
| ``*`` | ``*`` |
+----------+-----------------+
| ``/`` | ``/`` |
+----------+-----------------+
| ``**`` | ``**`` or ``^`` |
+----------+-----------------+
| ``~`` | ``!`` |
+----------+-----------------+
| ``or`` | ``|`` |
+----------+-----------------+
| ``and`` | ``&`` |
+----------+-----------------+
| ``<`` | ``<`` |
+----------+-----------------+
| ``<=`` | ``<=`` |
+----------+-----------------+
| ``==`` | ``==`` |
+----------+-----------------+
| ``!=`` | ``!=`` |
+----------+-----------------+
>>> x = robjects.r.seq(1, 10)
>>> print(x.ro + 1)
2:11
.. note::
In Python, using the operator ``+`` on two sequences
concatenates them and this behavior has been conserved:
>>> print(x + 1)
[1] 1 2 3 4 5 6 7 8 9 10 1
.. note::
The boolean operator ``not`` cannot be redefined in Python (at least up to
version 2.5), and its behavior could not be made to mimic R's behavior
.. index::
single: names; robjects
Names
-----
``R`` vectors can have a name given to all or some of the elements.
The property :attr:`names` can be used to get, or set, those names.
>>> x = robjects.r.seq(1, 5)
>>> x.names = robjects.StrVector('abcde')
>>> x.names[0]
'a'
>>> x.names[0] = 'z'
>>> tuple(x.names)
('z', 'b', 'c', 'd', 'e')
.. index::
pair: robjects;Environment
pair: robjects;globalenv
:class:`Array`
---------------
In `R`, arrays are simply vectors with a dimension attribute. That fact
was reflected in the class hierarchy with :class:`robjects.Array` inheriting
from :class:`robjects.Vector`.
.. autoclass:: rpy2.robjects.vectors.Array(obj)
:show-inheritance:
:members:
:class:`Matrix`
----------------
A :class:`Matrix` is a special case of :class:`Array`. As with arrays,
one must remember that this is just a vector with dimension attributes
(number of rows, number of columns).
>>> m = robjects.r.matrix(robjects.IntVector(range(10)), nrow=5)
>>> print(m)
[,1] [,2]
[1,] 0 5
[2,] 1 6
[3,] 2 7
[4,] 3 8
[5,] 4 9
.. note::
In *R*, matrices are column-major ordered, although the constructor
:func:`matrix` accepts a boolean argument *byrow* that, when true,
will build the matrix *as if* row-major ordered.
Computing on matrices
^^^^^^^^^^^^^^^^^^^^^
Regular operators work element-wise on the underlying vector.
>>> m = robjects.r.matrix(robjects.IntVector(range(4)), nrow=2)
>>> print(m.ro + 1)
[,1] [,2]
[1,] 1 3
[2,] 2 4
For more on operators, see :ref:`robjects-operationsdelegator`.
Matrix multiplication is available as :meth:`Matrix.dot`,
transposition as :meth:`Matrix.transpose`. Common
operations such as cross-product, eigen values computation
, and singular value decomposition are also available through
method with explicit names.
>>> print( m.crossprod(m) )
[,1] [,2]
[1,] 1 3
[2,] 3 13
>>> print( m.transpose().dot(m) )
[,1] [,2]
[1,] 1 3
[2,] 3 13
.. autoclass:: rpy2.robjects.vectors.Matrix(obj)
:show-inheritance:
:members:
Extracting
^^^^^^^^^^
Extracting can still be performed Python-style or
R-style.
>>> m = ro.r.matrix(ro.IntVector(range(2, 8)), nrow=3)
>>> print(m)
[,1] [,2]
[1,] 2 5
[2,] 3 6
[3,] 4 7
>>> m[0]
2
>>> m[5]
7
>>> print(m.rx(1))
[1] 2
>>> print(m.rx(6))
[1] 7
Matrixes are two-dimensional arrays, and elements can
be extracted according to two indexes:
>>> print(m.rx(1, 1))
[1] 2
>>> print(m.rx(3, 2))
[1] 7
Extracting a whole row, or column can be achieved by replacing an index number
by `True` or `False`
Extract the first column:
>>> print(m.rx(True, 1))
Extract the second row:
>>> print(m.rx(2, True))
.. _robjects-dataframes:
:class:`DataFrame`
------------------
Data frames are a common way in R to
represent the data to analyze.
A data frame can be thought of as a tabular representation of data,
with one variable per column, and one data point per row. Each column
is an R vector, which implies one type for all elements
in one given column, and which allows for possibly different types across
different columns.
If we consider for example tre data about pharmacokinetics of theophylline in
different subjects, the data table could look like this:
======= ====== ==== ==== ====
Subject Weight Dose Time conc
======= ====== ==== ==== ====
1 79.6 4.02 0.00 0.74
1 79.6 4.02 0.25 2.84
1 79.6 4.02 0.57 6.57
2 72.4 4.40 7.03 5.40
... ... ... ... ...
======= ====== ==== ==== ====
Such data representation shares similarities with a table in
a relational database: the structure between the variables, or columns,
is given by other column. In the example above, the grouping of
measures by subject is given by the column *Subject*.
In :mod:`rpy2.robjects`,
:class:`DataFrame` represents the `R` class `data.frame`.
Creating objects
^^^^^^^^^^^^^^^^
Creating a :class:`DataFrame` can be done by:
* Using the constructor for the class
* Create the data.frame through R
* Read data from a file using the instance method :meth:`from_csvfile`
The :class:`DataFrame` constructor accepts either an
:class:`rinterface.SexpVector`
(with :attr:`typeof` equal to *VECSXP*, that is, an R `list`)
or any Python object implementing the method :meth:`items`
(for example :class:`dict` or :class:`rpy2.rlike.container.OrdDict`).
Empty `data.frame`:
>>> dataf = robjects.DataFrame({})
`data.frame` with 2 two columns (not that the order of
the columns in the resulting :class:`DataFrame` can be different
from the order in which they are declared):
>>> d = {'a': robjects.IntVector((1,2,3)), 'b': robjects.IntVector((4,5,6))}
>>> dataf = robject.DataFrame(d)
To create a :class:`DataFrame` and be certain of the clumn order order,
an ordered dictionary can be used:
>>> import rpy2.rlike.container as rlc
>>> od = rlc.OrdDict([('value', robjects.IntVector((1,2,3))),
('letter', robjects.StrVector(('x', 'y', 'z')))])
>>> dataf = robjects.DataFrame(od)
>>> print(dataf.colnames)
[1] "letter" "value"
Creating the data.frame in R can otherwise be achieved in numerous ways,
as many R functions do return a `data.frame`, such as the
function `data.frame()`.
.. note::
When creating a :class:`DataFrame`, vectors of strings are automatically
converted by R into instances of class :class:`Factor`. This behavior
can be prevented by wrapping the call into the R base function I.
.. code-block:: python
from rpy2.robjects.vectors import DataFrame, StrVector
from rpy2.robjects.packages import importr
base = importr('base')
dataf = DataFrame({'string': base.I(StrVector('abbab')),
'factor': StrVector('abbab')})
Here the :class:`DataFrame` `dataf` now has two columns, one as
a :class:`Factor`, the other one as a :class:`StrVector`
>>> dataf.rx2('string')
<StrVector - Python:0x95fe5ec / R:0x9646ea0>
>>> dataf.rx2('factor')
<FactorVector - Python:0x95fe86c / R:0x9028138>
Extracting elements
^^^^^^^^^^^^^^^^^^^
Here again, Python's :meth:`__getitem__` will work
as a Python programmer will expect it to:
>>> len(dataf)
2
>>> dataf[0]
<Vector - Python:0x8a58c2c / R:0x8e7dd08>
The :class:`DataFrame` is composed of columns,
with each column being possibly of a different type:
>>> [column.rclass[0] for column in dataf]
['factor', 'integer']
Using R-style access to elements is a little richer,
with the *rx2* accessor taking more importance than earlier.
Like with Python's :meth:`__getitem__` above,
extracting on one index selects columns:
>>> dataf.rx(1)
<DataFrame - Python:0x8a584ac / R:0x95a6fb8>
>>> print(dataf.rx(1))
letter
1 x
2 y
3 z
Note that the result is itself
of class :class:`DataFrame`. To get the column as
a vector, use *rx2*:
>>> dataf.rx2(1)
<Vector - Python:0x8a4bfcc / R:0x8e7dd08>
>>> print(dataf.rx2(1))
[1] x y z
Levels: x y z
Since data frames are table-like structure, they
can be thought of as two-dimensional arrays and
can therefore be extracted on two indices.
>>> subdataf = dataf.rx(1, True)
>>> print(subdataf)
letter value
1 x 1
>>> rows_i <- robjects.IntVector((1,3))
>>> subdataf = dataf.rx(rows_i, True)
>>> print(subdataf)
letter value
1 x 1
3 z 3
That last example is extremely common in R. A vector of indices,
here *rows_i*, is used to take a subset of the :class:`DataFrame`.
Python docstrings
^^^^^^^^^^^^^^^^^
.. autoclass:: rpy2.robjects.vectors.DataFrame(tlist)
:show-inheritance:
:members:
|