File: Param.py

package info (click to toggle)
rsem 1.3.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,700 kB
  • sloc: cpp: 19,230; perl: 1,326; python: 1,245; ansic: 547; makefile: 186; sh: 154
file content (178 lines) | stat: -rw-r--r-- 7,500 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
__doc__="""

  pliu 20150511

  python module for all parameters, input arguments
"""

class Param:
  IDR_THRESHOLD  = 0.05
  N_PEAK         = 300000
  PEAK_TYPE      = '-savr'
  EXCLUSION_ZONE = '-500:85'  ## Anshul recommend -500:85
  TRAINING_GENE_MIN_LEN   = 1003
  TRAINING_MIN_MAPPABILITY = 0.8
  FLANKING_WIDTH = 500  ## in nt, flanking region around TSS and TES
  INFORMATIVE_DATA_MAX_P_VALUE = 0.01 ## external data set is informative if
                                      ## p-value is not more than this value

  def __init__(self):
    self.argdict = None

    ## has to be in the same naming convention as prsem-calculate-expression
    self.num_threads                = None
    self.chipseq_target_read_files  = None
    self.chipseq_control_read_files = None
    self.chipseq_read_files_multi_targets = None
    self.chipseq_bed_files_multi_targets  = None
    self.cap_stacked_chipseq_reads   = None
    self.n_max_stacked_chipseq_reads = None
    self.bowtie_path                = None
    self.chipseq_peak_file          = None
    self.mappability_bigwig_file    = None
    self.partition_model            = None
    self.gibbs_burnin               = None
    self.gibbs_number_of_samples    = None
    self.gibbs_sampling_gap         = None
    self.quiet                      = False

    ## arguments
    self.ref_fasta   = None
    self.ref_name    = None
    self.sample_name = None
    self.stat_name   = None
    self.imd_name    = None

    ## path and pRSEM scripts
    self.temp_dir       = None ## dir to save RSEM/pRSEM intermediate files
    self.prsem_scr_dir  = None ## pRSEM scripts dir
    self.prsem_rlib_dir = None ## place to install pRSEM required R libraries

    ## genome reference: training set isoforms
    self.fall_exon_crd     = None
    self.fall_tr_crd       = None ## tr info + mappability
    self.ftraining_tr_crd  = None ## training set tr

    ## ChIP-seq
    self.chipseqexperiment_target  = None ## reference to ChIP-seq experiment
    self.chipseqexperiment_control = None ## reference to ChIP-seq experiment
    self.chipseq_rscript   = None ## full name of process-chipseq.R
    self.filterSam2Bed     = None ## full name of filterSam2Bed binary
    self.spp_tgz           = None
    self.spp_script        = None
    self.idr_scr_dir       = None
    self.idr_script        = None
    self.fgenome_table     = None
    self.fidr_chipseq_peaks = None
    self.fall_chipseq_peaks = None
    self.fchipseq_peaks    = None ## full name of user supplied ChIP-seq peak
                                  ## file, otherwise is fidr_chipseq_peaks
    self.chipseq_target_fraglen = None ## spp-estimated fragment length
    self.fsppout_target = None ## full name of SPP output
                               ## this implementation needs to be refined since
                               ## the var is define in both Param and ChIPSeqExp
    self.fchipseq_target_signals  = None
    self.fchipseq_control_signals = None

    ## transcripts and RNA-seq
    self.transcripts = None ## reference to all transcripts to be quantified
    self.genes       = None ## reference to all genes to be quantified

    self.rnaseq_rscript    = None ## fullname of R script for dealing RNA-seq
    self.fti               = None ## RSEM's reference .ti file
    self.bigwigsummary_bin = None ## bigWigSummary binary
    self.fall_tr_features  = None ## file for all isoforms' features
    self.fall_tr_prior     = None ## file for all isoforms' priors
    self.fisoforms_results = None ## file for RSEM .isoforms.results
    self.fpvalLL           = None ## file for p-value on if informative
                                  ## and for log-likelihood
    self.fall_pvalLL = None ## file to store all the p-val and log-likelihood

    ## for multiple external data sets
    self.targetid2fchipseq_alignment = {}
    self.finfo_multi_targets = None
    self.flgt_model_multi_targets = None

    ## for testing procedure
    self.targetids = []


  def __str__(self):
    ss = [ "%-33s %s\n" % (key, val) for (key, val) in list(self.argdict.items())] + \
         [ "%-33s %s\n" % ('RSEM_temp_dir', self.temp_dir ) ] + \
         [ "%-33s %s\n" % ('pRSEM_scr_dir', self.prsem_scr_dir) ]
    return ''.join(ss)


  @classmethod
  def initFromCommandLineArguments(cls, argdict):
    import os
    prm = cls()
    prm.argdict = argdict
    for (key, val) in list(argdict.items()):
      setattr(prm, key, val)

    if prm.imd_name is not None:
      prm.temp_dir = os.path.split(prm.imd_name)[0] + '/'
    prm.prsem_scr_dir = os.path.dirname(os.path.realpath(__file__)) + '/'
    prm.prsem_rlib_dir = prm.prsem_scr_dir + 'RLib/'
    if not os.path.exists(prm.prsem_rlib_dir):
      os.mkdir(prm.prsem_rlib_dir)

    ## genome reference: pRSEM training set isoforms
    prm.fall_exon_crd    = prm.ref_name + '_prsem.all_exon_crd'
    prm.fall_tr_crd      = prm.ref_name + '_prsem.all_tr_crd'
    prm.ftraining_tr_crd = prm.ref_name + '_prsem.training_tr_crd'

    ## ChIP-seq
    prm.chipseq_rscript = prm.prsem_scr_dir + 'process-chipseq.R'
    prm.filterSam2Bed   = prm.prsem_scr_dir + 'filterSam2Bed'
    prm.spp_tgz = prm.prsem_scr_dir + 'phantompeakqualtools/spp_1.10.1.tar.gz'
    prm.spp_script    = prm.prsem_scr_dir + 'phantompeakqualtools/run_spp.R'
    prm.idr_scr_dir   = prm.prsem_scr_dir + 'idrCode/'
    prm.idr_script    = prm.idr_scr_dir + 'batch-consistency-analysis.r'
    prm.fgenome_table = prm.ref_name + '.chrlist'

    if prm.temp_dir is not None:
      prm.fsppout_target           = prm.temp_dir + 'target_phantom.tab'
      prm.fchipseq_target_signals  = prm.temp_dir + 'target.tagAlign.gz'
      prm.fchipseq_control_signals = prm.temp_dir + 'control.tagAlign.gz'
      prm.fidr_chipseq_peaks = "%s/%s" % (prm.temp_dir,
                                          'idr_target_vs_control.regionPeak.gz')
      ## have to name it this way due to run_spp.R's wired naming convention
      ## this names depens on the next two names
      prm.fall_chipseq_peaks = "%s/%s" % (prm.temp_dir,
                            'target.tagAlign_VS_control.tagAlign.regionPeak.gz')

    if prm.chipseq_peak_file is not None:
      prm.fchipseq_peaks = prm.chipseq_peak_file
    else:
      prm.fchipseq_peaks = prm.fidr_chipseq_peaks


    ## transcripts and RNA-seq
    prm.rnaseq_rscript = prm.prsem_scr_dir + 'process-rnaseq.R'
    prm.fti            = prm.ref_name + '.ti'
    prm.ffasta         = prm.ref_name + '.transcripts.fa'
    prm.bigwigsummary_bin = prm.prsem_scr_dir + 'bigWigSummary'
   #prm.fall_exon_crd     = prm.imd_name  + '_prsem.all_exon_crd'
   #prm.fall_tr_crd       = prm.imd_name  + '_prsem.all_tr_crd'
   #prm.ftraining_tr_crd  = prm.imd_name  + '_prsem.training_tr_crd'
    if prm.sample_name is not None: ## for calc-expr
      prm.fall_tr_gc        = prm.imd_name  + '_prsem.all_tr_gc'
      prm.fall_tr_features  = prm.stat_name + '_prsem.all_tr_features'
      prm.fall_tr_prior     = prm.stat_name + '_prsem.all_tr_prior'
      prm.fpvalLL           = prm.stat_name + '_prsem.pval_LL'

      prm.fisoforms_results = prm.sample_name + '.isoforms.results'
      prm.fall_pvalLL       = prm.sample_name + '.all.pval_LL'

      ## for multiple external data sets
      prm.finfo_multi_targets      = prm.temp_dir + 'multi_targets.info'
      prm.flgt_model_multi_targets = prm.stat_name + '_prsem.lgt_mdl.RData'

    return prm


def initFromCommandLineArguments(argdict):
  return Param.initFromCommandLineArguments(argdict)