1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
__doc__="""
pliu 20150511
python module for all parameters, input arguments
"""
class Param:
IDR_THRESHOLD = 0.05
N_PEAK = 300000
PEAK_TYPE = '-savr'
EXCLUSION_ZONE = '-500:85' ## Anshul recommend -500:85
TRAINING_GENE_MIN_LEN = 1003
TRAINING_MIN_MAPPABILITY = 0.8
FLANKING_WIDTH = 500 ## in nt, flanking region around TSS and TES
INFORMATIVE_DATA_MAX_P_VALUE = 0.01 ## external data set is informative if
## p-value is not more than this value
def __init__(self):
self.argdict = None
## has to be in the same naming convention as prsem-calculate-expression
self.num_threads = None
self.chipseq_target_read_files = None
self.chipseq_control_read_files = None
self.chipseq_read_files_multi_targets = None
self.chipseq_bed_files_multi_targets = None
self.cap_stacked_chipseq_reads = None
self.n_max_stacked_chipseq_reads = None
self.bowtie_path = None
self.chipseq_peak_file = None
self.mappability_bigwig_file = None
self.partition_model = None
self.gibbs_burnin = None
self.gibbs_number_of_samples = None
self.gibbs_sampling_gap = None
self.quiet = False
## arguments
self.ref_fasta = None
self.ref_name = None
self.sample_name = None
self.stat_name = None
self.imd_name = None
## path and pRSEM scripts
self.temp_dir = None ## dir to save RSEM/pRSEM intermediate files
self.prsem_scr_dir = None ## pRSEM scripts dir
self.prsem_rlib_dir = None ## place to install pRSEM required R libraries
## genome reference: training set isoforms
self.fall_exon_crd = None
self.fall_tr_crd = None ## tr info + mappability
self.ftraining_tr_crd = None ## training set tr
## ChIP-seq
self.chipseqexperiment_target = None ## reference to ChIP-seq experiment
self.chipseqexperiment_control = None ## reference to ChIP-seq experiment
self.chipseq_rscript = None ## full name of process-chipseq.R
self.filterSam2Bed = None ## full name of filterSam2Bed binary
self.spp_tgz = None
self.spp_script = None
self.idr_scr_dir = None
self.idr_script = None
self.fgenome_table = None
self.fidr_chipseq_peaks = None
self.fall_chipseq_peaks = None
self.fchipseq_peaks = None ## full name of user supplied ChIP-seq peak
## file, otherwise is fidr_chipseq_peaks
self.chipseq_target_fraglen = None ## spp-estimated fragment length
self.fsppout_target = None ## full name of SPP output
## this implementation needs to be refined since
## the var is define in both Param and ChIPSeqExp
self.fchipseq_target_signals = None
self.fchipseq_control_signals = None
## transcripts and RNA-seq
self.transcripts = None ## reference to all transcripts to be quantified
self.genes = None ## reference to all genes to be quantified
self.rnaseq_rscript = None ## fullname of R script for dealing RNA-seq
self.fti = None ## RSEM's reference .ti file
self.bigwigsummary_bin = None ## bigWigSummary binary
self.fall_tr_features = None ## file for all isoforms' features
self.fall_tr_prior = None ## file for all isoforms' priors
self.fisoforms_results = None ## file for RSEM .isoforms.results
self.fpvalLL = None ## file for p-value on if informative
## and for log-likelihood
self.fall_pvalLL = None ## file to store all the p-val and log-likelihood
## for multiple external data sets
self.targetid2fchipseq_alignment = {}
self.finfo_multi_targets = None
self.flgt_model_multi_targets = None
## for testing procedure
self.targetids = []
def __str__(self):
ss = [ "%-33s %s\n" % (key, val) for (key, val) in list(self.argdict.items())] + \
[ "%-33s %s\n" % ('RSEM_temp_dir', self.temp_dir ) ] + \
[ "%-33s %s\n" % ('pRSEM_scr_dir', self.prsem_scr_dir) ]
return ''.join(ss)
@classmethod
def initFromCommandLineArguments(cls, argdict):
import os
prm = cls()
prm.argdict = argdict
for (key, val) in list(argdict.items()):
setattr(prm, key, val)
if prm.imd_name is not None:
prm.temp_dir = os.path.split(prm.imd_name)[0] + '/'
prm.prsem_scr_dir = os.path.dirname(os.path.realpath(__file__)) + '/'
prm.prsem_rlib_dir = prm.prsem_scr_dir + 'RLib/'
if not os.path.exists(prm.prsem_rlib_dir):
os.mkdir(prm.prsem_rlib_dir)
## genome reference: pRSEM training set isoforms
prm.fall_exon_crd = prm.ref_name + '_prsem.all_exon_crd'
prm.fall_tr_crd = prm.ref_name + '_prsem.all_tr_crd'
prm.ftraining_tr_crd = prm.ref_name + '_prsem.training_tr_crd'
## ChIP-seq
prm.chipseq_rscript = prm.prsem_scr_dir + 'process-chipseq.R'
prm.filterSam2Bed = prm.prsem_scr_dir + 'filterSam2Bed'
prm.spp_tgz = prm.prsem_scr_dir + 'phantompeakqualtools/spp_1.10.1.tar.gz'
prm.spp_script = prm.prsem_scr_dir + 'phantompeakqualtools/run_spp.R'
prm.idr_scr_dir = prm.prsem_scr_dir + 'idrCode/'
prm.idr_script = prm.idr_scr_dir + 'batch-consistency-analysis.r'
prm.fgenome_table = prm.ref_name + '.chrlist'
if prm.temp_dir is not None:
prm.fsppout_target = prm.temp_dir + 'target_phantom.tab'
prm.fchipseq_target_signals = prm.temp_dir + 'target.tagAlign.gz'
prm.fchipseq_control_signals = prm.temp_dir + 'control.tagAlign.gz'
prm.fidr_chipseq_peaks = "%s/%s" % (prm.temp_dir,
'idr_target_vs_control.regionPeak.gz')
## have to name it this way due to run_spp.R's wired naming convention
## this names depens on the next two names
prm.fall_chipseq_peaks = "%s/%s" % (prm.temp_dir,
'target.tagAlign_VS_control.tagAlign.regionPeak.gz')
if prm.chipseq_peak_file is not None:
prm.fchipseq_peaks = prm.chipseq_peak_file
else:
prm.fchipseq_peaks = prm.fidr_chipseq_peaks
## transcripts and RNA-seq
prm.rnaseq_rscript = prm.prsem_scr_dir + 'process-rnaseq.R'
prm.fti = prm.ref_name + '.ti'
prm.ffasta = prm.ref_name + '.transcripts.fa'
prm.bigwigsummary_bin = prm.prsem_scr_dir + 'bigWigSummary'
#prm.fall_exon_crd = prm.imd_name + '_prsem.all_exon_crd'
#prm.fall_tr_crd = prm.imd_name + '_prsem.all_tr_crd'
#prm.ftraining_tr_crd = prm.imd_name + '_prsem.training_tr_crd'
if prm.sample_name is not None: ## for calc-expr
prm.fall_tr_gc = prm.imd_name + '_prsem.all_tr_gc'
prm.fall_tr_features = prm.stat_name + '_prsem.all_tr_features'
prm.fall_tr_prior = prm.stat_name + '_prsem.all_tr_prior'
prm.fpvalLL = prm.stat_name + '_prsem.pval_LL'
prm.fisoforms_results = prm.sample_name + '.isoforms.results'
prm.fall_pvalLL = prm.sample_name + '.all.pval_LL'
## for multiple external data sets
prm.finfo_multi_targets = prm.temp_dir + 'multi_targets.info'
prm.flgt_model_multi_targets = prm.stat_name + '_prsem.lgt_mdl.RData'
return prm
def initFromCommandLineArguments(argdict):
return Param.initFromCommandLineArguments(argdict)
|